The continuous quaternion wavelet transform on distribution spaces

被引:0
|
作者
Lhamu, Drema [1 ]
Das, Aparna [2 ]
Singh, Sunil Kumar [3 ]
Kumar, Awniya [4 ]
机构
[1] Jawaharlal Nehru Coll, Dept Math, Pasighat 791102, Arunachal Prade, India
[2] Vinoba Bhave Univ, Dept Math, Hazaribagh 825301, Jharkhand, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow 226025, Uttar Pradesh, India
[4] Mahatma Gandhi Cent Univ, Dept Math, Motihari 845401, Bihar, India
关键词
Quaternions; Continuous quaternion wavelet transform; Sobolev space; Besov space; 2-DIMENSIONAL DIRECTIONAL WAVELETS;
D O I
10.1007/s12215-024-01180-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a revised version of some existing results in the literature for the quaternion Fourier transform (QFT) and quaternion wavelet transforms. The inner-product relation and its consequent formula for the continuous quaternion wavelet transform (CQWT) are derived in Lp(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} space under the assumption that the admissible wavelet is complex-valued and has a real QFT. Furthermore, the characterization of quaternion Sobolev spaces Hs(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} and Wm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{m,p} (\Omega ; {\mathbb {H}})$$\end{document}, weighted quaternion Sobolev space Wkm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{k}<^>{m,p} (\varvec{\Omega }; {\mathbb {H}} )$$\end{document} and generalized quaternion Sobolev space Hw omega(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{w}<^>{\omega } ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document}, quaternion Besov space by means of the CQWT is presented. The CQWT is analysed within these function and distribution spaces, yielding novel findings regarding continuity and boundedness.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Uncertainty Principles For The Continuous Quaternion Shearlet Transform
    Kamel Brahim
    Bochra Nefzi
    Emna Tefjeni
    Advances in Applied Clifford Algebras, 2019, 29
  • [42] The quaternion Fourier and wavelet transforms on spaces of functions and distributions
    Drema Lhamu
    Sunil Kumar Singh
    Research in the Mathematical Sciences, 2020, 7
  • [43] The quaternion Fourier and wavelet transforms on spaces of functions and distributions
    Lhamu, Drema
    Singh, Sunil Kumar
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2020, 7 (03)
  • [44] The continuous wavelet transform with rotations
    Jaime Navarro
    Miguel Angel Alvarez
    Sampling Theory in Signal and Image Processing, 2005, 4 (1): : 45 - 55
  • [45] Images of the continuous wavelet transform
    Ghandehari, Mahya
    Taylor, Keith F.
    OPERATOR METHODS IN WAVELETS, TILINGS, AND FRAMES, 2014, 626 : 55 - 65
  • [46] The Inverse of the Continuous Wavelet Transform
    Weisz, Ferenc
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2017, PT II, 2018, 10672 : 246 - 253
  • [47] Continuous wavelet transform - An introduction
    Ojha, A
    WAVELETS AND ALLIED TOPICS, 2001, : 1 - 13
  • [48] Continuous Watson wavelet transform
    Upadhyay, S. K.
    Tripathi, Alok
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (09) : 639 - 647
  • [49] Continuous wavelet transform on the hyperboloid
    Bogdanova, Iva
    Vandergheynst, Pierre
    Gazeau, Jean-Pierre
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (03) : 285 - 306
  • [50] CONTINUOUS WAVELET TRANSFORM AND CONTINUOUS MULTISCALE ANALYSIS
    STARK, HG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (01) : 179 - 196