The continuous quaternion wavelet transform on distribution spaces

被引:0
|
作者
Lhamu, Drema [1 ]
Das, Aparna [2 ]
Singh, Sunil Kumar [3 ]
Kumar, Awniya [4 ]
机构
[1] Jawaharlal Nehru Coll, Dept Math, Pasighat 791102, Arunachal Prade, India
[2] Vinoba Bhave Univ, Dept Math, Hazaribagh 825301, Jharkhand, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow 226025, Uttar Pradesh, India
[4] Mahatma Gandhi Cent Univ, Dept Math, Motihari 845401, Bihar, India
关键词
Quaternions; Continuous quaternion wavelet transform; Sobolev space; Besov space; 2-DIMENSIONAL DIRECTIONAL WAVELETS;
D O I
10.1007/s12215-024-01180-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a revised version of some existing results in the literature for the quaternion Fourier transform (QFT) and quaternion wavelet transforms. The inner-product relation and its consequent formula for the continuous quaternion wavelet transform (CQWT) are derived in Lp(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} space under the assumption that the admissible wavelet is complex-valued and has a real QFT. Furthermore, the characterization of quaternion Sobolev spaces Hs(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} and Wm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{m,p} (\Omega ; {\mathbb {H}})$$\end{document}, weighted quaternion Sobolev space Wkm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{k}<^>{m,p} (\varvec{\Omega }; {\mathbb {H}} )$$\end{document} and generalized quaternion Sobolev space Hw omega(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{w}<^>{\omega } ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document}, quaternion Besov space by means of the CQWT is presented. The CQWT is analysed within these function and distribution spaces, yielding novel findings regarding continuity and boundedness.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Wavelet transform and radon transform on the quaternion Heisenberg group
    Jian Xun He
    He Ping Liu
    Acta Mathematica Sinica, English Series, 2014, 30 : 619 - 636
  • [22] The continuous fractional wavelet transform on generalized weighted Sobolev spaces
    Prasad, Akhilesh
    Kumar, Praveen
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [23] Continuous characterization of Besov spaces by the mean of the wavelet transform with rotations
    Navarro, Jaime
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 683 - 697
  • [24] Some Uncertainty Principles for the Right-Sided Multivariate Continuous Quaternion Wavelet Transform
    Hleili, Manel
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [25] Continuous quaternion fourier and wavelet transforms
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2014, 12 (04)
  • [26] Image Compression Using Quaternion Wavelet Transform
    Madhu, C.
    Shankar, E. Anant
    HELIX, 2018, 8 (01): : 2691 - 2695
  • [27] Two-dimensional quaternion wavelet transform
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) : 10 - 21
  • [28] Linear Canonical Wavelet Transform in Quaternion Domains
    Shah, Firdous A.
    Teali, Aajaz A.
    Tantary, Azhar Y.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (03)
  • [29] Employing quaternion wavelet transform for banknote classification
    Gai, Shan
    Yang, Guowei
    Wan, Minghua
    NEUROCOMPUTING, 2013, 118 : 171 - 178
  • [30] Linear Canonical Wavelet Transform in Quaternion Domains
    Firdous A. Shah
    Aajaz A. Teali
    Azhar Y. Tantary
    Advances in Applied Clifford Algebras, 2021, 31