The continuous quaternion wavelet transform on distribution spaces

被引:0
|
作者
Lhamu, Drema [1 ]
Das, Aparna [2 ]
Singh, Sunil Kumar [3 ]
Kumar, Awniya [4 ]
机构
[1] Jawaharlal Nehru Coll, Dept Math, Pasighat 791102, Arunachal Prade, India
[2] Vinoba Bhave Univ, Dept Math, Hazaribagh 825301, Jharkhand, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow 226025, Uttar Pradesh, India
[4] Mahatma Gandhi Cent Univ, Dept Math, Motihari 845401, Bihar, India
关键词
Quaternions; Continuous quaternion wavelet transform; Sobolev space; Besov space; 2-DIMENSIONAL DIRECTIONAL WAVELETS;
D O I
10.1007/s12215-024-01180-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a revised version of some existing results in the literature for the quaternion Fourier transform (QFT) and quaternion wavelet transforms. The inner-product relation and its consequent formula for the continuous quaternion wavelet transform (CQWT) are derived in Lp(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} space under the assumption that the admissible wavelet is complex-valued and has a real QFT. Furthermore, the characterization of quaternion Sobolev spaces Hs(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} and Wm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{m,p} (\Omega ; {\mathbb {H}})$$\end{document}, weighted quaternion Sobolev space Wkm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{k}<^>{m,p} (\varvec{\Omega }; {\mathbb {H}} )$$\end{document} and generalized quaternion Sobolev space Hw omega(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{w}<^>{\omega } ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document}, quaternion Besov space by means of the CQWT is presented. The CQWT is analysed within these function and distribution spaces, yielding novel findings regarding continuity and boundedness.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Image processing using the Quaternion Wavelet Transform
    Bayro-Corrochano, E
    Gomora, MADLT
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 613 - 620
  • [32] Characterization of Holder and Sobolev spaces via the continuous wavelet transform with rotations
    Navarro, Jaime
    ADVANCES IN OPERATOR THEORY, 2023, 8 (04)
  • [33] INVERSE CONTINUOUS WAVELET TRANSFORM IN WEIGHTED VARIABLE EXPONENT AMALGAM SPACES
    Kulak, Oznur
    Aydin, Ismail
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1171 - 1183
  • [34] Wavelet Transform of Dini Lipschitz Functions on the Quaternion Algebra
    Bouhlal, A.
    Safouane, N.
    Achak, A.
    Daher, R.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (01)
  • [35] Wavelet Transform of Dini Lipschitz Functions on the Quaternion Algebra
    A. Bouhlal
    N. Safouane
    A. Achak
    R. Daher
    Advances in Applied Clifford Algebras, 2021, 31
  • [36] Medical image fusion based on quaternion wavelet transform
    Zhang, Zhancheng
    Luo, Xiaoqing
    Xiong, Mengyu
    Wang, Zhiwen
    Li, Kai
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2020, 14
  • [37] Characterization of Hölder and Sobolev spaces via the continuous wavelet transform with rotations
    Jaime Navarro
    Advances in Operator Theory, 2023, 8
  • [38] Inverse continuous wavelet transform in Pringsheim's sense on Wiener amalgam spaces
    F. Weisz
    Acta Mathematica Hungarica, 2015, 145 : 392 - 415
  • [39] Inverse continuous wavelet transform in Pringsheim's sense on Wiener amalgam spaces
    Weisz, F.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 392 - 415
  • [40] Uncertainty Principles For The Continuous Quaternion Shearlet Transform
    Brahim, Kamel
    Nefzi, Bochra
    Tefjeni, Emna
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)