The continuous quaternion wavelet transform on distribution spaces

被引:0
|
作者
Lhamu, Drema [1 ]
Das, Aparna [2 ]
Singh, Sunil Kumar [3 ]
Kumar, Awniya [4 ]
机构
[1] Jawaharlal Nehru Coll, Dept Math, Pasighat 791102, Arunachal Prade, India
[2] Vinoba Bhave Univ, Dept Math, Hazaribagh 825301, Jharkhand, India
[3] Babasaheb Bhimrao Ambedkar Univ, Dept Math, Lucknow 226025, Uttar Pradesh, India
[4] Mahatma Gandhi Cent Univ, Dept Math, Motihari 845401, Bihar, India
关键词
Quaternions; Continuous quaternion wavelet transform; Sobolev space; Besov space; 2-DIMENSIONAL DIRECTIONAL WAVELETS;
D O I
10.1007/s12215-024-01180-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article provides a revised version of some existing results in the literature for the quaternion Fourier transform (QFT) and quaternion wavelet transforms. The inner-product relation and its consequent formula for the continuous quaternion wavelet transform (CQWT) are derived in Lp(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} space under the assumption that the admissible wavelet is complex-valued and has a real QFT. Furthermore, the characterization of quaternion Sobolev spaces Hs(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{s}({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document} and Wm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{m,p} (\Omega ; {\mathbb {H}})$$\end{document}, weighted quaternion Sobolev space Wkm,p(Omega;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{k}<^>{m,p} (\varvec{\Omega }; {\mathbb {H}} )$$\end{document} and generalized quaternion Sobolev space Hw omega(R2;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{w}<^>{\omega } ({\mathbb {R}}<^>{2}; {\mathbb {H}})$$\end{document}, quaternion Besov space by means of the CQWT is presented. The CQWT is analysed within these function and distribution spaces, yielding novel findings regarding continuity and boundedness.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The Continuous Quaternion Wavelet Transform on Function Spaces
    Lhamu, Drema
    Singh, Sunil Kumar
    Pandey, C. P.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [2] THE CONTINUOUS WAVELET TRANSFORM ON ULTRADISTRIBUTION SPACES
    Singh, Abhishek
    Mala, Anshu
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 189 - 201
  • [3] The Continuous Wavelet Transform and Symmetric Spaces
    R. Fabec
    G. Ólafsson
    Acta Applicandae Mathematica, 2003, 77 : 41 - 69
  • [4] The continuous wavelet transform and symmetric spaces
    Fabec, R
    Olafsson, G
    ACTA APPLICANDAE MATHEMATICAE, 2003, 77 (01) : 41 - 69
  • [5] ON THE CONTINUOUS WAVELET TRANSFORM ON HOMOGENEOUS SPACES
    Esmaeelzadeh, F.
    Gol, R. A. Kamyabi
    Tousi, R. Raisi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (04)
  • [6] Continuous abstract wavelet transform on homogeneous spaces
    Sharma, Jyoti
    Kumar, Ajay
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (05) : 805 - 818
  • [7] Continuous wavelet transform in variable Lebesgue spaces
    Szarvas, Kristof
    Weisz, Ferenc
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2014, 59 (04): : 497 - 512
  • [8] The development of the quaternion wavelet transform
    Fletcher, P.
    Sangwine, S. J.
    SIGNAL PROCESSING, 2017, 136 : 2 - 15
  • [9] Continuous wavelet transform on Triebel-Lizorkin spaces
    Baison-Olmo, Antonio Luis
    Cruz-Barriguete, Victor Alberto
    Navarro, Jaime
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3159 - 3170
  • [10] Fractional Continuous Wavelet Transform on Some Function Spaces
    Prasad, Akhilesh
    Kumar, Praveen
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2016, 86 (01) : 57 - 64