Existence and Concentration of Semiclassical Bound States for a Quasilinear Schrodinger-Poisson System
被引:0
|
作者:
Ramos, Gustavo de Paula
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, BrazilUniv Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Ramos, Gustavo de Paula
[1
]
Siciliano, Gaetano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bari Aldo Moro, Dept Matemat, via E Orabona 4, I-70126 Bari, ItalyUniv Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
Siciliano, Gaetano
[2
]
机构:
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Bari Aldo Moro, Dept Matemat, via E Orabona 4, I-70126 Bari, Italy
In the paper we consider the following quasilinear Schrodinger-Poisson system in the whole space R-3 {-epsilon(2) Delta u + (V + phi)u = u |u|(p-1) {- Delta phi - beta Delta(4)phi = u(2), where 1 < p < 5, beta > 0, V : R-3 ->]0, infinity[ , and look for solutions u, phi : R-3 -> R in the semiclassical regime, namely when epsilon -> 0. By means of the Lyapunov-Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential V.