Existence and Concentration of Semiclassical Bound States for a Quasilinear Schrodinger-Poisson System

被引:0
|
作者
Ramos, Gustavo de Paula [1 ]
Siciliano, Gaetano [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Bari Aldo Moro, Dept Matemat, via E Orabona 4, I-70126 Bari, Italy
基金
巴西圣保罗研究基金会;
关键词
Quasilinear Schrodinger-Poisson equations; Perturbation methods; Nonlocal problems; Semiclassical states; Asymptotic behavior; ASYMPTOTIC-BEHAVIOR; EQUATIONS;
D O I
10.1007/s40840-024-01761-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we consider the following quasilinear Schrodinger-Poisson system in the whole space R-3 {-epsilon(2) Delta u + (V + phi)u = u |u|(p-1) {- Delta phi - beta Delta(4)phi = u(2), where 1 < p < 5, beta > 0, V : R-3 ->]0, infinity[ , and look for solutions u, phi : R-3 -> R in the semiclassical regime, namely when epsilon -> 0. By means of the Lyapunov-Schmidt method we estimate the number of solutions by the cup-length of the critical manifold of the external potential V.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM
    Huang, Lanxin
    Su, Jiabao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1597 - 1612
  • [22] EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR SUBLINEAR SCHRODINGER-POISSON EQUATIONS
    Mao, Anmin
    Chen, Yusong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 339 - 348
  • [23] Quasilinear Schrodinger-Poisson system with exponential and logarithmic nonlinearities
    Peng, Xueqin
    Jia, Gao
    Huang, Chen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7538 - 7554
  • [24] Existence of semiclassical solutions for some critical Schrodinger-Poisson equations with potentials
    Yang, Minbo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [25] POSITIVE BOUND STATES FOR FRACTIONAL SCHRODINGER-POISSON SYSTEM WITH CRITICAL EXPONENT
    Sun, Xia
    Teng, Kaimin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3735 - 3768
  • [26] Uniqueness of positive bound states with multiple bumps for Schrodinger-Poisson system
    Li, Benniao
    Long, Wei
    Tang, Zhongwei
    Yang, Jinge
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [27] Multiplicity of semiclassical states for Schrodinger-Poisson systems with critical frequency
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [28] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [29] Bound and ground states for a class of Schrodinger-Poisson systems
    Zhang, Fubao
    Cai, Li
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [30] On the existence of ground states for nonlinear Schrodinger-Poisson equation
    De Leo, Mariano
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 979 - 986