Optimal Transport of Maps

被引:0
|
作者
Jung, Woochul [1 ]
Morales, Carlos [2 ,3 ]
Wen, Xiao [4 ,5 ,6 ]
机构
[1] Konyang Univ Hosp, Healthcare Data Sci Ctr, Daejeon, South Korea
[2] Beihang Univ, Beijing Adv Innovat Ctr Future Blockchain & Privac, Beijing, Peoples R China
[3] Beijing Acad Blockchain & edge Comp, Beijing 100086, Peoples R China
[4] Beihang Univ, Sch Artificial Intelligence, Beijing, Peoples R China
[5] Beihang Univ, Sch Math Sci, Beijing, Peoples R China
[6] Beijing Zhongguancun Lab, Beijing, Peoples R China
基金
新加坡国家研究基金会;
关键词
Optimal transport; Mapping; Metric space; TOPOLOGICAL STABILITY;
D O I
10.1007/s10957-024-02576-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The problem of transporting graphs of continuous maps in a metric space with minimal cost is formulated. The minimal cost distance generated by this problem in the space of continuous maps is studied. The topology induced by this distance will be studied. A measure-theoretical version of the minimal cost distance will be given.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] On the computation of optimal transport maps using gradient flows and multiresolution analysis
    Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
    不详
    不详
    Lect. Notes Control Inf. Sci., 2008, (65-78):
  • [42] Multimarginal Optimal Transport Maps for One-dimensional Repulsive Costs
    Colombo, Maria
    De Pascale, Luigi
    Di Marino, Simone
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (02): : 350 - 368
  • [43] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Felix Otto
    Maxime Prod’homme
    Tobias Ried
    Annals of PDE, 2021, 7
  • [44] PROJECTIONS ONTO THE CONE OF OPTIMAL TRANSPORT MAPS AND COMPRESSIBLE FLUID FLOWS
    Westdickenberg, Michael
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (04) : 605 - 649
  • [45] QUANTITATIVE STABILITY OF OPTIMAL TRANSPORT MAPS UNDER VARIATIONS OF THE TARGET MEASURE
    Delalande, Alex
    Merigot, Quentin
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (15) : 3321 - 3357
  • [46] EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS OBTAINED BY THE SECONDARY VARIATIONAL METHOD
    Chen, Ping
    Liu, Hai-Rong
    Yang, Xiao-Ping
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (01) : 75 - 102
  • [47] NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    Villani, Cedric
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 855 - 876
  • [48] Variational Approach to Regularity of Optimal Transport Maps: General Cost Functions
    Otto, Felix
    Prod'homme, Maxime
    Ried, Tobias
    ANNALS OF PDE, 2021, 7 (02)
  • [49] Lectures on Ma - Trudinger - Wang Curvature and Regularity of Optimal Transport Maps
    Kim, Young-Heon
    ANALYSIS AND GEOMETRY OF METRIC MEASURE SPACES, 2013, 56 : 119 - 143
  • [50] Bounds on optimal transport maps onto log-concave measures
    Colombo, Maria
    Fathi, Max
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 271 : 1007 - 1022