An interesting wall-crossing: failure of the wall-crossing/MMP correspondence

被引:0
|
作者
Rezaee, Fatemeh [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, JCMB, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
18G; BRIDGELAND STABILITY CONDITIONS; MINIMAL MODEL PROGRAM; BIRATIONAL GEOMETRY; MODULI SPACES; HILBERT SCHEMES; SHEAVES; POINTS; THREEFOLDS;
D O I
10.1007/s00029-024-00985-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel wall-crossing phenomenon in the space of Bridgeland stability conditions: a wall in the stability space of canonical genus 4 curves that induces non-Q-factorial singularities and hence, it cannot be detected as an operation in the Minimal Model Program of the corresponding moduli space, unlike the case for many surfaces. More precisely, we give an example of a wall-crossing in Db(P3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{D}<^>{b}(\mathbb {P}<^>{3})$$\end{document} such that the wall induces a small contraction of the moduli space of stable objects associated to one of the adjacent chambers, but a divisorial contraction to the other. This significantly complicates the overall picture in this correspondence to applications of stability conditions to algebraic geometry. The full wall-crossing for canonical genus four curves and the geometry are considered in the published paper (Rezaee in Proc LMS 128(1):e12577, 2024); this article is devoted to describe a particularly interesting wall among the walls in Rezaee (Proc LMS 128(1):e12577, 2024) in full details to explain the novel phenomenon.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Wall-crossing effects on quiver BPS algebras
    Galakhov, Dmitry
    Morozov, Alexei
    Tselousov, Nikita
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05):
  • [42] Landau-Ginzburg/Calabi-Yau Correspondence via Wall-Crossing
    Jinwon CHOI
    Young-Hoon KIEM
    ChineseAnnalsofMathematics,SeriesB, 2017, (04) : 883 - 900
  • [43] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Cirafici, Michele
    Sinkovics, Annamaria
    Szabo, Richard J.
    ANNALES HENRI POINCARE, 2013, 14 (04): : 1001 - 1041
  • [44] GOPAKUMAR-VAFA INVARIANTS AND WALL-CROSSING
    Toda, Yukinobu
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 123 (01) : 141 - 193
  • [45] Invariance of Elliptic Genus Under Wall-Crossing
    Liu, Henry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (03)
  • [46] Abelian Quiver Invariants and Marginal Wall-Crossing
    Sergey Mozgovoy
    Markus Reineke
    Letters in Mathematical Physics, 2014, 104 : 495 - 525
  • [47] Wall-crossing invariants: from quantum mechanics to knots
    Galakhov, D.
    Mironov, A.
    Morozov, A.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2015, 120 (03) : 549 - 577
  • [48] A Wall-Crossing Formula and the Invariance of GLSM Correlation Functions
    Gang Tian
    Guangbo Xu
    Peking Mathematical Journal, 2020, 3 (2) : 235 - 291
  • [49] The 3d twisted index and wall-crossing
    Bullimore, Mathew
    Ferrari, Andrea E. V.
    Kim, Heeyeon
    SCIPOST PHYSICS, 2022, 12 (06):
  • [50] MMP via wall-crossing for moduli spaces of stable sheaves on an Enriques surface
    Nuer, Howard
    Yoshioka, Kota
    ADVANCES IN MATHEMATICS, 2020, 372