An interesting wall-crossing: failure of the wall-crossing/MMP correspondence

被引:0
|
作者
Rezaee, Fatemeh [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, JCMB, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
18G; BRIDGELAND STABILITY CONDITIONS; MINIMAL MODEL PROGRAM; BIRATIONAL GEOMETRY; MODULI SPACES; HILBERT SCHEMES; SHEAVES; POINTS; THREEFOLDS;
D O I
10.1007/s00029-024-00985-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel wall-crossing phenomenon in the space of Bridgeland stability conditions: a wall in the stability space of canonical genus 4 curves that induces non-Q-factorial singularities and hence, it cannot be detected as an operation in the Minimal Model Program of the corresponding moduli space, unlike the case for many surfaces. More precisely, we give an example of a wall-crossing in Db(P3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{D}<^>{b}(\mathbb {P}<^>{3})$$\end{document} such that the wall induces a small contraction of the moduli space of stable objects associated to one of the adjacent chambers, but a divisorial contraction to the other. This significantly complicates the overall picture in this correspondence to applications of stability conditions to algebraic geometry. The full wall-crossing for canonical genus four curves and the geometry are considered in the published paper (Rezaee in Proc LMS 128(1):e12577, 2024); this article is devoted to describe a particularly interesting wall among the walls in Rezaee (Proc LMS 128(1):e12577, 2024) in full details to explain the novel phenomenon.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Instanton Counting and Wall-Crossing for Orbifold Quivers
    Michele Cirafici
    Annamaria Sinkovics
    Richard J. Szabo
    Annales Henri Poincaré, 2013, 14 : 1001 - 1041
  • [32] A geometric derivation of the dyon wall-crossing group
    Cheng, Miranda C. N.
    Hollands, Lotte
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):
  • [33] Donaldson wall-crossing formulas via topology
    Leness, TG
    FORUM MATHEMATICUM, 1999, 11 (04) : 417 - 457
  • [34] Wall-crossing, Hitchin systems, and the WKB approximation
    Gaiotto, Davide
    Moore, Gregory W.
    Neitzke, Andrew
    ADVANCES IN MATHEMATICS, 2013, 234 : 239 - 403
  • [35] Abelian Quiver Invariants and Marginal Wall-Crossing
    Mozgovoy, Sergey
    Reineke, Markus
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (05) : 495 - 525
  • [36] A wall-crossing formula for the signature of symplectic quotients
    Metzler, DS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) : 3495 - 3521
  • [37] Wall-crossing, Toric divisor and Seiberg duality
    Takahiro Nishinaka
    Journal of High Energy Physics, 2013
  • [38] Wall-crossing, Toric divisor and Seiberg duality
    Nishinaka, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [39] Wall-Crossing, Free Fermions and Crystal Melting
    Sulkowski, Piotr
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) : 517 - 562
  • [40] Wall-Crossing, Free Fermions and Crystal Melting
    Piotr Sułkowski
    Communications in Mathematical Physics, 2011, 301 : 517 - 562