An interesting wall-crossing: failure of the wall-crossing/MMP correspondence

被引:0
|
作者
Rezaee, Fatemeh [1 ,2 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, JCMB, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
SELECTA MATHEMATICA-NEW SERIES | 2024年 / 30卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
18G; BRIDGELAND STABILITY CONDITIONS; MINIMAL MODEL PROGRAM; BIRATIONAL GEOMETRY; MODULI SPACES; HILBERT SCHEMES; SHEAVES; POINTS; THREEFOLDS;
D O I
10.1007/s00029-024-00985-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel wall-crossing phenomenon in the space of Bridgeland stability conditions: a wall in the stability space of canonical genus 4 curves that induces non-Q-factorial singularities and hence, it cannot be detected as an operation in the Minimal Model Program of the corresponding moduli space, unlike the case for many surfaces. More precisely, we give an example of a wall-crossing in Db(P3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{D}<^>{b}(\mathbb {P}<^>{3})$$\end{document} such that the wall induces a small contraction of the moduli space of stable objects associated to one of the adjacent chambers, but a divisorial contraction to the other. This significantly complicates the overall picture in this correspondence to applications of stability conditions to algebraic geometry. The full wall-crossing for canonical genus four curves and the geometry are considered in the published paper (Rezaee in Proc LMS 128(1):e12577, 2024); this article is devoted to describe a particularly interesting wall among the walls in Rezaee (Proc LMS 128(1):e12577, 2024) in full details to explain the novel phenomenon.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Quiver Symmetries and Wall-Crossing Invariance
    Del Monte, Fabrizio
    Longhi, Pietro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 398 (01) : 89 - 132
  • [22] Wall-crossing formulas in Hamiltonian geometry
    Paradan, Paul-Emile
    GEOMETRIC ASPECTS OF ANALYSIS AND MECHANICS: IN HONOR OF THE 65TH BIRTHDAY OF HANS DUISTERMAAT, 2011, 292 : 295 - 343
  • [23] On the Wall-Crossing Formula for Quadratic Differentials
    Allegretti, Dylan G. L.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (09) : 8033 - 8077
  • [24] Wall-crossing from supersymmetric galaxies
    Andriyash, Evgeny
    Denef, Frederik
    Jafferis, Daniel L.
    Moore, Gregory W.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [25] Quasimap wall-crossing for GIT quotients
    Yang Zhou
    Inventiones mathematicae, 2022, 227 : 581 - 660
  • [26] On wall-crossing for K-stability
    Zhou, Chuyu
    ADVANCES IN MATHEMATICS, 2023, 413
  • [27] Analyticity and resurgence in wall-crossing formulas
    Kontsevich, Maxim
    Soibelman, Yan
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [28] Analyticity and resurgence in wall-crossing formulas
    Maxim Kontsevich
    Yan Soibelman
    Letters in Mathematical Physics, 2022, 112
  • [29] Equivalence of three wall-crossing formulae
    Sen, Ashoke
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2012, 6 (03) : 601 - 659
  • [30] Combinatorial wall-crossing and the Mullineux involution
    Dimakis, Panagiotis
    Yue, Guangyi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 49 - 72