Some approximation properties in fractional Musielak-Sobolev spaces

被引:0
|
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On Fractional Musielak-Sobolev Spaces and Applications to Nonlocal Problems
    de Albuquerque, J. C.
    de Assis, L. R. S.
    Carvalho, M. L. M.
    Salort, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)
  • [2] Embedding and extension results in fractional Musielak-Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    Srati, Mohammed
    APPLICABLE ANALYSIS, 2023, 102 (01) : 195 - 219
  • [3] On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications
    Bahrouni, Anouar
    Missaoui, Hlel
    Ounaies, Hichem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
  • [4] On Some Clases of Nonlocal Problems in Musielak-Sobolev Spaces
    Avci, Mustafa
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (06) : 791 - 814
  • [5] On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    Srati, M.
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1933 - 1952
  • [6] Eigenvalue type problem in s(., .)-fractional Musielak-Sobolev spaces
    Srati, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 387 - 413
  • [7] An imbedding theorem for Musielak-Sobolev spaces
    Fan, Xianling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1959 - 1971
  • [8] Some Approximation Properties in Musielak-Orlicz-Sobolev Spaces
    Benkirane, A.
    Val, M. Ould Mohamedhen
    THAI JOURNAL OF MATHEMATICS, 2012, 10 (02): : 371 - 381
  • [9] Renormalized Solutions for the Non-local Equations in Fractional Musielak-Sobolev Spaces
    Li, Ying
    Zhang, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
  • [10] Nonlocal problems with Neumann and Robin boundary condition in fractional Musielak-Sobolev spaces
    Srati, M.
    Azroul, E.
    Benkirane, A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)