Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2

被引:1
|
作者
Chauhan, Manav [1 ]
Rana, Bharti [1 ]
Gupta, Poorvi [1 ]
Kalita, Rahul [1 ]
Thadhani, Chhaya [1 ]
Manna, Kuntal [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem, New Delhi, India
关键词
METHANE OXIDATION; ACETIC-ACID; CARBON-DIOXIDE; METAL; CONVERSION; DESIGN; FUNCTIONALIZATION; TEMPERATURE; ZEOLITES; MFI;
D O I
10.1038/s41467-024-54101-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C-H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C-H activation/C-C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C-H oxidation, yielding methanol or acetic acid with high productivities of 38,592 mu molCH3OHgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document} and 81,043 mu molCH3CO2HgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document}, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2. The development of catalytic technology for direct oxidation of methane into value-added products is highly lucrative. Here, a metal-organic framework supported mono iron(III)-dihydroxyl catalyst selectively oxidizes methane into methanol or acetic acid using only oxygen, where acetic acid formation occurs via in-situ methane carboxylation and methanol hydrocarboxylation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] First Experimental Confirmation of the CH3O + H2CO → CH3OH + HCO Reaction: Expanding the CH3OH Formation Mechanism in Interstellar Ices
    Santos, Julia C.
    Chuang, Ko-Ju
    Lamberts, Thanja
    Fedoseev, Gleb
    Ioppolo, Sergio
    Linnartz, Harold
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 931 (02)
  • [42] Synthesis and crystal structure of binuclear organotin (IV) complexes [Ph3Sn(CH3OH)O2CC6H4CO2(CH3OH)SnPh3]•2CH3OH and [Ph3SnS2CN(CH2CH2)2NCS2SnPh3]•2CH3OH
    Yin, HD
    Ma, CL
    Wang, Y
    Fang, HX
    Shao, JX
    ACTA CHIMICA SINICA, 2002, 60 (05) : 897 - 903
  • [43] AB INITIO CALCULATIONS OF BARRIERS TO INTERNAL ROTATION OF CH3CH3 CH3NH2 CH3OH N2H4 H2O2 AND NH2OH
    PEDERSEN, L
    MOROKUMA, K
    JOURNAL OF CHEMICAL PHYSICS, 1967, 46 (10): : 3941 - &
  • [44] ON MECHANISM OF SYNTHESIS CO+2H2-]CH3OH
    BOROWITZ, JL
    JOURNAL OF CATALYSIS, 1969, 13 (01) : 106 - &
  • [45] H2O2+ ions in ionized O2/CH4 mixtures:: Intermediacy of CH3OOH+ and CH2O+
    de Petris, Giulia
    Garzoli, Stefania
    Troiani, Anna
    CHEMICAL PHYSICS LETTERS, 2007, 435 (4-6) : 219 - 223
  • [46] [MnⅡMn2Ⅲ(H2L)2(CH3COO)4(CH3OH)2]·H2O·CH3OH的合成与晶体结构
    蒋春芳
    黎燕
    梁福沛
    广西师范大学学报(自然科学版), 2008, (01) : 66 - 70
  • [47] Activating and Converting CH4 to CH3OH via the CuPdO2/CuO Nanointerface
    Bai, Shuxing
    Xu, Yong
    Wang, Pengtang
    Shao, Qi
    Huan, Xiaoqing
    ACS CATALYSIS, 2019, 9 (08) : 6938 - 6944
  • [48] The internal energy of CO2 produced by the catalytic oxidation of CH3OH by O2 on polycrystalline platinum
    Peng, T. L.
    Bernasek, S. L.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (15):
  • [49] Titania-Modified Silver Electrocatalyst for Selective CO2 Reduction to CH3OH and CH4 from DFT Study
    Zhai, Lina
    Cui, Chaonan
    Zhao, Yuntao
    Zhu, Xinli
    Han, Jinyu
    Wang, Hua
    Ge, Qingfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30): : 16275 - 16282
  • [50] High-temperature rate constants for CH3OH+Kr→ products, OH+CH3OH→ products, OH+(CH3)2CO → CH2COCH3+H2O, and OH+CH3 → CH2+H2O
    Srinivasan, N. K.
    Su, M. -C.
    Michael, J. V.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (19): : 3951 - 3958