Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2

被引:1
|
作者
Chauhan, Manav [1 ]
Rana, Bharti [1 ]
Gupta, Poorvi [1 ]
Kalita, Rahul [1 ]
Thadhani, Chhaya [1 ]
Manna, Kuntal [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem, New Delhi, India
关键词
METHANE OXIDATION; ACETIC-ACID; CARBON-DIOXIDE; METAL; CONVERSION; DESIGN; FUNCTIONALIZATION; TEMPERATURE; ZEOLITES; MFI;
D O I
10.1038/s41467-024-54101-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C-H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C-H activation/C-C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C-H oxidation, yielding methanol or acetic acid with high productivities of 38,592 mu molCH3OHgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document} and 81,043 mu molCH3CO2HgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document}, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2. The development of catalytic technology for direct oxidation of methane into value-added products is highly lucrative. Here, a metal-organic framework supported mono iron(III)-dihydroxyl catalyst selectively oxidizes methane into methanol or acetic acid using only oxygen, where acetic acid formation occurs via in-situ methane carboxylation and methanol hydrocarboxylation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Fe Active Sites in FeZSM-5 Catalyst for Selective Oxidation of CH4 to CH3OH at Room Temperature
    N. S. Ovanesyan
    K. A. Dubkov
    A. A. Pyalling
    A. A. Shteinman
    Journal of Radioanalytical and Nuclear Chemistry, 2000, 246 : 149 - 152
  • [22] Studies of selective NO reduction by CH4 and CH3OH over Co and Cu exchanged mordenite
    Vassallo, J
    Lezcano, M
    Miro, E
    Petunchi, J
    CATALYSIS AND AUTOMOTIVE POLLUTION CONTROL III, 1995, 96 : 697 - 706
  • [23] ON MECHANISM OF CH3OH OXIDATION TO CH2O OVER MOO3-FE2(MOO4)3 CATALYST
    PERNICON.N
    LAZZERIN, F
    LIBERTI, G
    LANZAVEC.G
    JOURNAL OF CATALYSIS, 1969, 14 (04) : 293 - &
  • [24] Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH
    Ding, Jie
    Teng, Zhenyuan
    Su, Xiaozhi
    Kato, Kosaku
    Liu, Yuhang
    Xiao, Ting
    Liu, Wei
    Liu, Lingyue
    Zhang, Qiao
    Ren, Xinyi
    Zhang, Jincheng
    Chen, Zhaoyang
    Teruhisa, Ohno
    Yamakata, Akira
    Yang, Hongbin
    Huang, Yanqiang
    Liu, Bin
    Zhai, Yueming
    CHEM, 2023, 9 (04): : 1017 - 1035
  • [25] Catalytic oxidation of CH4 into CH3OH using C24N24-supported single-atom catalyst
    Shujie Zhang
    Xiaojing Lv
    Junkai Wang
    Tianqi Wang
    Jingyi Shan
    Journal of Molecular Modeling, 2021, 27
  • [26] Theoretical Study of the Photochemical Mechanisms of the Electronic Quenching of NO(A 2 Σ+) with CH4, CH3OH, and CO2
    Bridgers, Aerial N.
    Urquilla, Justin A.
    Im, Julia
    Petit, Andrew S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (34): : 7228 - 7240
  • [27] Catalytic oxidation of CH4 into CH3OH using C24N24-supported single-atom catalyst
    Zhang, Shujie
    Lv, Xiaojing
    Wang, Junkai
    Wang, Tianqi
    Shan, Jingyi
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (12)
  • [28] MECHANISTIC ASPECTS OF THE ELECTROCHEMICAL REDUCTION OF CO2, CO, AND CH3OH TO CH4 AT RU ELECTRODES
    SUMMERS, DP
    FRESE, KW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 246 - COLL
  • [29] Investigation of the Phase Equilibria of CO2/CH3OH/H2O and CO2/CH3OH/H2O/H2 Mixtures
    Vogel, Kevin
    Hocke, Elisabeth
    Beisswenger, Lucien
    Drochner, Alfons
    Etzold, Bastian J. M.
    Vogel, Herbert
    CHEMICAL ENGINEERING & TECHNOLOGY, 2019, 42 (11) : 2386 - 2392
  • [30] Insight into the synergistic effect between plasma and oxygen vacancy direct oxidation of CH4 to CH3OH by molecular O2 at mild condition
    Li, Kai
    Cai, Junqi
    Tao, Yue
    Xing, Yunhe
    Zhu, Zuchao
    Lu, Zhiqiang
    Zhang, Xuming
    APPLIED CATALYSIS A-GENERAL, 2024, 687