Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2

被引:1
|
作者
Chauhan, Manav [1 ]
Rana, Bharti [1 ]
Gupta, Poorvi [1 ]
Kalita, Rahul [1 ]
Thadhani, Chhaya [1 ]
Manna, Kuntal [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem, New Delhi, India
关键词
METHANE OXIDATION; ACETIC-ACID; CARBON-DIOXIDE; METAL; CONVERSION; DESIGN; FUNCTIONALIZATION; TEMPERATURE; ZEOLITES; MFI;
D O I
10.1038/s41467-024-54101-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C-H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C-H activation/C-C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C-H oxidation, yielding methanol or acetic acid with high productivities of 38,592 mu molCH3OHgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document} and 81,043 mu molCH3CO2HgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document}, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2. The development of catalytic technology for direct oxidation of methane into value-added products is highly lucrative. Here, a metal-organic framework supported mono iron(III)-dihydroxyl catalyst selectively oxidizes methane into methanol or acetic acid using only oxygen, where acetic acid formation occurs via in-situ methane carboxylation and methanol hydrocarboxylation.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Designing ordered Pd/ZrSBA-15 catalyst for direct oxidation of CH4 into CH3OH with H2O2
    Qi, Hai-Xin
    Xu, Guangyu
    Li, Shihui
    Wang, Qin
    Zhai, Shang-Ru
    Ning, Xiangchun
    MATERIALS TODAY CHEMISTRY, 2025, 43
  • [12] Highly selective photocatalytic oxidation of CH4 to CH3OH: A theoretical study
    Wang, Erpeng
    Zheng, Yazhuo
    Zhou, Jian
    Sun, Zhimei
    SURFACES AND INTERFACES, 2024, 54
  • [13] Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions
    Agarwal, Nishtha
    Freakley, Simon J.
    McVicker, Rebecca U.
    Althahban, Sultan M.
    Dimitratos, Nikolaos
    He, Qian
    Morgan, David J.
    Jenkins, Robert L.
    Willock, David J.
    Taylor, Stuart H.
    Kiely, Christopher J.
    Hutchings, Graham J.
    SCIENCE, 2017, 358 (6360) : 223 - 226
  • [14] Dual-Function Reaction Center for Simultaneous Activation of CH4 and O2 via Oxygen Vacancies during Direct Selective Oxidation of CH4 into CH3OH
    Chen, Yi
    Wang, Fang
    Huang, Zeai
    Chen, Jiahao
    Han, Chunqiu
    Li, Qilin
    Cao, Yuehan
    Zhou, Ying
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (39) : 46694 - 46702
  • [15] Intermediate stabilization for tuning photocatalytic selective oxidation of CH4 to CH3OH over Co3O4/ZnO
    Xiao, Zhen
    Shen, Jinni
    Zhang, Jiangjie
    Li, Dongmiao
    Li, Yi
    Wang, Xuxu
    Zhang, Zizhong
    JOURNAL OF CATALYSIS, 2022, 413 : 20 - 30
  • [16] Palladium oxidation and catalytic activity towards CH4, C2H4, CH3OH
    Zemlyanov, Dmitry
    Kloetzer, Bernhard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [17] The Key Role of Support Surface Hydrogenation in the CH4 to CH3OH Selective Oxidation by a ZrO2-Supported Single-Atom Catalyst
    Harrath, Karim
    Yu, Xiaohu
    Xiao, Hai
    Li, Jun
    ACS CATALYSIS, 2019, 9 (10): : 8903 - 8909
  • [18] CONVERSION OF CH4 TO CH3OH - REACTIONS OF COO+ WITH CH4 AND D-2, CO+ WITH CH3OD AND D2O, AND CO+(CH3OD) WITH XE
    CHEN, YM
    CLEMMER, DE
    ARMENTROUT, PB
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (17) : 7815 - 7826
  • [19] Synthesis of SnO2 nanowires for CO, CH4 and CH3OH gases sensing
    Shehzad, Khurram
    Shah, Nazar Abbas
    Amin, Muhammad
    Abbas, Murrawat
    Syed, Waqar Adil
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2018, 14 (08):
  • [20] The Fe active sites in FeZSM-5 catalyst for selective oxidation of CH4 to CH3OH at room temperature
    Ovanesyan, NS
    Dubkov, KA
    Pyalling, AA
    Shteinman, AA
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2000, 246 (01) : 149 - 152