Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2

被引:1
|
作者
Chauhan, Manav [1 ]
Rana, Bharti [1 ]
Gupta, Poorvi [1 ]
Kalita, Rahul [1 ]
Thadhani, Chhaya [1 ]
Manna, Kuntal [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem, New Delhi, India
关键词
METHANE OXIDATION; ACETIC-ACID; CARBON-DIOXIDE; METAL; CONVERSION; DESIGN; FUNCTIONALIZATION; TEMPERATURE; ZEOLITES; MFI;
D O I
10.1038/s41467-024-54101-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C-H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C-H activation/C-C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C-H oxidation, yielding methanol or acetic acid with high productivities of 38,592 mu molCH3OHgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$38,592\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{\rm{OH}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document} and 81,043 mu molCH3CO2HgFe-1h-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$81,043\,\upmu {{{\rm{mol}}}}_{{{{\rm{CH}}}}_{3}{{{\rm{CO}}}}_{2}{{\rm{H}}}}{{{{\rm{g}}}}_{{{\rm{Fe}}}}}<^>{-1}{{{\rm{h}}}}<^>{-1}$$\end{document}, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2. The development of catalytic technology for direct oxidation of methane into value-added products is highly lucrative. Here, a metal-organic framework supported mono iron(III)-dihydroxyl catalyst selectively oxidizes methane into methanol or acetic acid using only oxygen, where acetic acid formation occurs via in-situ methane carboxylation and methanol hydrocarboxylation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Photocatalytic O2 oxidation of CH4 to CH3OH on AuFe-ZnO bifunctional catalyst
    Du, Haoran
    Li, Xiuping
    Cao, Zhiyang
    Zhang, Shao
    Yu, Wenzhao
    Sun, Fengyu
    Wang, Shengyao
    Zhao, Jingjing
    Wang, Jiaqi
    Bai, Yuan
    Yang, Juanjuan
    Yang, Ping
    Jiang, Bo
    Li, Hexing
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
  • [2] Finding harmony among incompatiblity in the selective oxidation of CH4 to CH3OH with atmospheric O2
    Natinsky, Benjamin
    Lu, Shengtao
    Copeland, Emma
    Quintana, Jason
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [3] Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2
    Qi, Guodong
    Davies, Thomas E.
    Nasrallah, Ali
    Sainna, Mala A.
    Howe, Alexander G. R.
    Lewis, Richard J.
    Quesne, Matthew
    Catlow, C. Richard A.
    Willock, David J.
    He, Qian
    Bethell, Donald
    Howard, Mark J.
    Murrer, Barry A.
    Harrison, Brian
    Kiely, Christopher J.
    Zhao, Xingling
    Deng, Feng
    Xu, Jun
    Hutchings, Graham J.
    NATURE CATALYSIS, 2022, 5 (01) : 45 - 54
  • [4] Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2
    Guodong Qi
    Thomas E. Davies
    Ali Nasrallah
    Mala A. Sainna
    Alexander G. R. Howe
    Richard J. Lewis
    Matthew Quesne
    C. Richard A. Catlow
    David J. Willock
    Qian He
    Donald Bethell
    Mark J. Howard
    Barry A. Murrer
    Brian Harrison
    Christopher J. Kiely
    Xingling Zhao
    Feng Deng
    Jun Xu
    Graham J. Hutchings
    Nature Catalysis, 2022, 5 : 45 - 54
  • [5] I+ is catalyst for oxidation of CH4 to CH3OH
    不详
    CHEMICAL & ENGINEERING NEWS, 2005, 83 (16) : 38 - 38
  • [6] Selective oxidation of CH4 to CH3OH using the Catalytica (bpym)PtCl2 catalyst:: a theoretical study
    Xu, X
    Fu, G
    Goddard, WA
    Periana, RA
    NATURAL GAS CONVERSION VII, 2004, 147 : 499 - 504
  • [7] THE O-3 SENSITIZED PARTIAL OXIDATION OF CH4 TO CH3OH
    ZHU, G
    GESSER, HD
    HUNTER, NR
    NATURAL GAS CONVERSION II, 1994, 81 : 373 - 378
  • [8] Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2
    Feng, Ningdong
    Lin, Huiwen
    Song, Hui
    Yang, Longxiao
    Tang, Daiming
    Deng, Feng
    Ye, Jinhua
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] SELECTIVE OXIDATION OF CH3OH TO H2CO ON A COPPER(110) CATALYST
    WACHS, IE
    MADIX, RJ
    JOURNAL OF CATALYSIS, 1978, 53 (02) : 208 - 227
  • [10] Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2
    Ningdong Feng
    Huiwen Lin
    Hui Song
    Longxiao Yang
    Daiming Tang
    Feng Deng
    Jinhua Ye
    Nature Communications, 12