Asymptotic behavior of laminated beams with Kelvin-Voigt damping

被引:0
|
作者
Victor R. Cabanillas [1 ]
Teófanes Quispe Méndez [2 ]
机构
[1] Programa de Estudios Generales,Universidad de Lima
[2] Facultad de Ciencias Matemáticas,Universidad Nacional Mayor de San Marcos
关键词
35B35; 35B40; 93D20; 35Q93; 93Q74;
D O I
10.1007/s11565-024-00559-9
中图分类号
学科分类号
摘要
This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of t-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-\frac{1}{2}}$$\end{document}. We prove, finally, that this decay rate is optimal.
引用
收藏
相关论文
共 50 条
  • [41] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [42] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [43] Sharp stability of a string with local degenerate Kelvin-Voigt damping
    Han, Zhong-Jie
    Liu, Zhuangyi
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [44] Periodic homogenization for Kelvin-Voigt viscoelastic media with a Kelvin-Voigt viscoelastic interphase
    Daridon, Loic
    Licht, Christian
    Orankitjaroen, Somsak
    Pagano, Stephane
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2016, 58 : 163 - 171
  • [45] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [46] Mathematical justification of Kelvin-Voigt beam models by asymptotic methods
    Rodriguez-Aros, A. D.
    Viano, J. M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03): : 529 - 556
  • [48] Exponential stability for the wave equations with local Kelvin-Voigt damping
    Liu, Kangsheng
    Rao, Bopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (03): : 419 - 432
  • [49] Exponential stability of an elastic string with local Kelvin-Voigt damping
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1009 - 1015
  • [50] Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams
    Lei, Y.
    Adhikari, S.
    Friswell, M. I.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 66-67 : 1 - 13