Asymptotic behavior of laminated beams with Kelvin-Voigt damping

被引:0
|
作者
Victor R. Cabanillas [1 ]
Teófanes Quispe Méndez [2 ]
机构
[1] Programa de Estudios Generales,Universidad de Lima
[2] Facultad de Ciencias Matemáticas,Universidad Nacional Mayor de San Marcos
关键词
35B35; 35B40; 93D20; 35Q93; 93Q74;
D O I
10.1007/s11565-024-00559-9
中图分类号
学科分类号
摘要
This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of t-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-\frac{1}{2}}$$\end{document}. We prove, finally, that this decay rate is optimal.
引用
收藏
相关论文
共 50 条
  • [31] Asymptotic analysis of a porous elastic system with Kelvin-Voigt damping from the second spectrum perspective
    Zougheib, Hamza
    El Arwadi, Toufic
    Madureira, Rodrigo L. R.
    Rincon, Mauro A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [32] Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D
    Chen, Wenhui
    ASYMPTOTIC ANALYSIS, 2020, 117 (1-2) : 113 - 140
  • [33] An integral equation approach applied to the piezo patch vibration control of beams with Kelvin-Voigt damping
    Kayacik, Ö
    Bruch, JC
    Sloss, JM
    Adali, S
    Sadek, IS
    SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 394 - 405
  • [34] Stability of a Nonlinear Axially Moving String With the Kelvin-Voigt Damping
    Shahruz, S. M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (01): : 0145011 - 0145014
  • [35] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [36] Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping
    Antontsev, S. N.
    de Oliveira, H. B.
    Khompysh, Kh.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 1122 - 1154
  • [37] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [38] Stability of the wave equations on a tree with local Kelvin-Voigt damping
    Ammari, Kais
    Liu, Zhuangyi
    Shel, Farhat
    SEMIGROUP FORUM, 2020, 100 (02) : 364 - 382
  • [39] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [40] Stability for coupled waves with locally disturbed Kelvin-Voigt damping
    Hassine, Fathi
    Souayeh, Nadia
    SEMIGROUP FORUM, 2021, 102 (01) : 134 - 159