Asymptotic behavior of laminated beams with Kelvin-Voigt damping

被引:0
|
作者
Victor R. Cabanillas [1 ]
Teófanes Quispe Méndez [2 ]
机构
[1] Programa de Estudios Generales,Universidad de Lima
[2] Facultad de Ciencias Matemáticas,Universidad Nacional Mayor de San Marcos
关键词
35B35; 35B40; 93D20; 35Q93; 93Q74;
D O I
10.1007/s11565-024-00559-9
中图分类号
学科分类号
摘要
This work considers a one-dimensional system consisting of two identical Timoshenko beams. The model considers that an adhesive layer of small thickness joins the two surfaces, thus producing an interfacial slip under homogeneous mixed Neumann-Dirichlet-Dirichlet boundary conditions. We introduce a Kelvin-Voigt type damping into the rotation equation, and we study the well-posedness of the problem and the asymptotic behavior of the solutions using techniques from the semigroup theory of linear operators and the frequency domain method. When the wave’s propagation speeds are equal in both beams, we show that the Kelvin-Voigt dissipative term acting on the rotation equation is sufficient to obtain the exponential decay of the solutions while maintaining the structural dissipation characteristic of the model. When these propagation speeds differ, we show the lack of exponential decay and prove that the solutions decay polynomially with a decay rate of t-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^{-\frac{1}{2}}$$\end{document}. We prove, finally, that this decay rate is optimal.
引用
收藏
相关论文
共 50 条
  • [21] Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin-Voigt damping
    Chen, Wei-Ren
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (13) : 3040 - 3056
  • [22] Frictional versus Kelvin-Voigt damping in a transmission problem
    Oquendo, Higidio Portillo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7026 - 7032
  • [23] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    MATHEMATICS, 2020, 8 (05)
  • [24] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [25] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [26] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [27] On the porous-elastic system with Kelvin-Voigt damping
    Santos, M. L.
    Almeida Junior, D. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 498 - 512
  • [28] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [29] Optimal decay for coupled waves with Kelvin-Voigt damping
    Oquendo, Higidio Portillo
    Pacheco, Patricia Sanez
    APPLIED MATHEMATICS LETTERS, 2017, 67 : 16 - 20
  • [30] Asymptotic analysis for the Kelvin-Voigt model for a thin laminate
    Panasenko, Grigory
    Stavre, Ruxandra
    COMPTES RENDUS MECANIQUE, 2015, 343 (5-6): : 365 - 370