Breaking binary in cardiovascular disease risk prediction

被引:0
|
作者
Yichi Zhang [1 ]
Akl C. Fahed [2 ]
机构
[1] Massachusetts General Hospital,Department of Medicine
[2] Massachusetts General Hospital,Cardiovascular Research Center
[3] Broad Institute of MIT and Harvard,Cardiovascular Disease Initiative
来源
关键词
D O I
10.1038/s44325-024-00041-7
中图分类号
学科分类号
摘要
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death in the world. However, advances in genetics, omics research, machine learning (ML), and precision medicine have inspired revolutionary new tools in ASCVD risk stratification. Together, polygenic risk scores (PRS) and composite ML-based algorithms help shift the paradigm away from binary predictions towards more comprehensive continuum models. Continued efforts are needed to address socioeconomic and racial disparities in the PRS space.
引用
收藏
相关论文
共 50 条
  • [41] Artificial intelligence improves risk prediction in cardiovascular disease
    Teshale, Achamyeleh Birhanu
    Htun, Htet Lin
    Vered, Mor
    Owen, Alice J.
    Ryan, Joanne
    Tonkin, Andrew
    Freak-Poli, Rosanne
    GEROSCIENCE, 2024,
  • [42] Cardiovascular disease risk prediction in the elderly in Spain: The EPICARDIAN risk score
    Gabriel, R.
    Alonso, M.
    Novella, B.
    Reviriego, B.
    Rodriguez-Salvanes, F.
    Vega, S.
    Muniz, J.
    Suarez, C.
    EUROPEAN HEART JOURNAL, 2006, 27 : 252 - 252
  • [43] Prediction and Risk Stratification of Cardiovascular Disease in Diabetic Kidney Disease Patients
    Ren, Jingjing
    Liu, Dongwei
    Li, Guangpu
    Duan, Jiayu
    Dong, Jiancheng
    Liu, Zhangsuo
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [44] Breaking news! Rosiglitazone and cardiovascular risk
    Sanjay Kaul
    George A. Diamond
    Nature Reviews Cardiology, 2010, 7 : 670 - 672
  • [45] Evaluating Binary Classifiers for Cardiovascular Disease Prediction: Enhancing Early Diagnostic Capabilities
    Iacobescu, Paul
    Marina, Virginia
    Anghel, Catalin
    Anghele, Aurelian-Dumitrache
    JOURNAL OF CARDIOVASCULAR DEVELOPMENT AND DISEASE, 2024, 11 (12)
  • [46] Universal Risk Prediction for Individuals With and Without Atherosclerotic Cardiovascular Disease
    Mok, Yejin
    Dardari, Zeina
    Sang, Yingying
    Hu, Xiao
    Bancks, Michael P.
    Mathews, Lena
    Hoogeveen, Ron C.
    Koton, Silvia
    Blaha, Michael J.
    Post, Wendy S.
    Ballantyne, Christie M.
    Coresh, Josef
    Rosamond, Wayne
    Matsushita, Kunihiro
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (05) : 562 - 573
  • [47] Risk Prediction for Atherosclerotic Cardiovascular Disease With and Without Race Stratification
    Ghosh, Arnab K.
    Venkatraman, Sara
    Nanna, Michael G.
    Safford, Monika M.
    Colantonio, Lisandro D.
    Brown, Todd M.
    Pinheiro, Laura C.
    Peterson, Eric D.
    Navar, Ann Marie
    Sterling, Madeline R.
    Soroka, Orysya
    Nahid, Musarrat
    Banerjee, Samprit
    Goyal, Parag
    JAMA CARDIOLOGY, 2024, 9 (01) : 55 - 62
  • [48] Sonography's Use in the Prediction of Cardiovascular Disease Risk and Research
    Stigall, A. Nicole
    JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY, 2019, 35 (04) : 271 - 272
  • [49] QUANTIFYING UNCERTAINTY IN THE PREDICTION OF CARDIOVASCULAR DISEASE RISK IN NATIONAL POPULATIONS
    Custodio, Alejandro Rana
    Danaei, Goodarz
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1851 - 1851
  • [50] DOES ERECTILE DYSFUNCTION IMPROVE CARDIOVASCULAR DISEASE RISK PREDICTION?
    Araujo, Andre
    Hall, Susan
    Ganz, Peter
    Chiu, Gretchen
    Rosen, Raymond
    Kupelian, Varant
    McKinlay, John
    JOURNAL OF UROLOGY, 2010, 183 (04): : E23 - E23