Breaking binary in cardiovascular disease risk prediction

被引:0
|
作者
Yichi Zhang [1 ]
Akl C. Fahed [2 ]
机构
[1] Massachusetts General Hospital,Department of Medicine
[2] Massachusetts General Hospital,Cardiovascular Research Center
[3] Broad Institute of MIT and Harvard,Cardiovascular Disease Initiative
来源
关键词
D O I
10.1038/s44325-024-00041-7
中图分类号
学科分类号
摘要
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death in the world. However, advances in genetics, omics research, machine learning (ML), and precision medicine have inspired revolutionary new tools in ASCVD risk stratification. Together, polygenic risk scores (PRS) and composite ML-based algorithms help shift the paradigm away from binary predictions towards more comprehensive continuum models. Continued efforts are needed to address socioeconomic and racial disparities in the PRS space.
引用
收藏
相关论文
共 50 条
  • [21] The relationship between the atherosclerotic cardiovascular disease risk score used in the prediction of cardiovascular disease risk and endocan
    Cakirca, M.
    Dae, S. A.
    Zorlu, M.
    Kiskac, M.
    Tunc, M.
    Karatoprak, C.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2019, 22 (05) : 713 - 717
  • [22] Cardiovascular disease risk prediction in type 1 diabetes
    Farran, B.
    McGurnaghan, S.
    Blackbourn, L.
    McKeigue, P. M.
    Colhoun, H. M.
    DIABETOLOGIA, 2017, 60 : S532 - S533
  • [23] Race as a Component of Cardiovascular Disease Risk Prediction Algorithms
    Vasan, Ramachandran S.
    Rao, Shreya
    van den Heuvel, Edwin
    CURRENT CARDIOLOGY REPORTS, 2023, 25 (10) : 1131 - 1138
  • [24] Overview of Risk Prediction Models in Cardiovascular Disease Research
    Cui, Jisheng
    ANNALS OF EPIDEMIOLOGY, 2009, 19 (10) : 711 - 717
  • [25] Cardiovascular risk prediction in people with chronic kidney disease
    Matsushita, Kunihiro
    Ballew, Shoshana H.
    Coresh, Josef
    CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2016, 25 (06): : 518 - 523
  • [26] Cardiovascular Disease Risk Prediction in the HIV Outpatient Study
    Thompson-Paul, Angela M.
    Lichtenstein, Kenneth A.
    Armon, Carl
    Palella, Frank J., Jr.
    Skarbinski, Jacek
    Chmiel, Joan S.
    Hart, Rachel
    Wei, Stanley C.
    Loustalot, Fleetwood
    Brooks, John T.
    Buchacz, Kate
    CLINICAL INFECTIOUS DISEASES, 2016, 63 (11) : 1508 - 1516
  • [27] Race as a Component of Cardiovascular Disease Risk Prediction Algorithms
    Ramachandran S. Vasan
    Shreya Rao
    Edwin van den Heuvel
    Current Cardiology Reports, 2023, 25 : 1131 - 1138
  • [28] Identifying novel biomarkers for cardiovascular disease risk prediction
    Ge, Y.
    Wang, T. J.
    JOURNAL OF INTERNAL MEDICINE, 2012, 272 (05) : 430 - 439
  • [29] Risk Prediction of Cardiovascular Disease in Type 2 Diabetes
    Cederholm, Jan
    Eeg-Olofsson, Katarina
    Eliasson, Bjoern
    Zethelius, Bjoern
    Nilsson, Peter M.
    Gudbjornsdottir, Soffia
    DIABETES CARE, 2008, 31 (10) : 2038 - 2043
  • [30] Cardiovascular Disease Risk Prediction - Integration into Clinical Practice
    Abd T.T.
    Blaha M.J.
    Blumenthal R.S.
    Joshi P.H.
    Current Cardiovascular Risk Reports, 2013, 7 (5) : 346 - 353