Breaking binary in cardiovascular disease risk prediction

被引:0
|
作者
Yichi Zhang [1 ]
Akl C. Fahed [2 ]
机构
[1] Massachusetts General Hospital,Department of Medicine
[2] Massachusetts General Hospital,Cardiovascular Research Center
[3] Broad Institute of MIT and Harvard,Cardiovascular Disease Initiative
来源
关键词
D O I
10.1038/s44325-024-00041-7
中图分类号
学科分类号
摘要
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death in the world. However, advances in genetics, omics research, machine learning (ML), and precision medicine have inspired revolutionary new tools in ASCVD risk stratification. Together, polygenic risk scores (PRS) and composite ML-based algorithms help shift the paradigm away from binary predictions towards more comprehensive continuum models. Continued efforts are needed to address socioeconomic and racial disparities in the PRS space.
引用
收藏
相关论文
共 50 条
  • [31] Current approach to atherosclerotic cardiovascular disease risk prediction
    Khan, Wahab J.
    Kalra, Dinesh K.
    FUTURE CARDIOLOGY, 2025, 21 (02) : 67 - 69
  • [33] Cardiovascular risk prediction in chronic kidney disease patients
    Cedeno Mora, Santiago
    Goicoechea, Marian
    Torres, Esther
    Verdalles, Ursula
    Perez de Jose, Ana
    Verde, Eduardo
    Garcia de Vinuesa, Soledad
    Luno, Jose
    NEFROLOGIA, 2017, 37 (03): : 293 - 300
  • [34] Prediction model for cardiovascular disease risk in hemodialysis patients
    You, Xu
    Huang, Ying Yue
    Wang, Ying
    Yu, Ming Xue
    Li, Xiang Yong
    Xu, Lin
    Zou, He Qun
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2022, 54 (05) : 1127 - 1134
  • [35] Chronic kidney disease measures for cardiovascular risk prediction
    Mok, Yejin
    Ballew, Shoshana H.
    Matsushita, Kunihiro
    ATHEROSCLEROSIS, 2021, 335 : 110 - 118
  • [36] Cardiovascular disease risk prediction models: challenges and perspectives
    Farzadfar, Farshad
    LANCET GLOBAL HEALTH, 2019, 7 (10): : E1288 - E1289
  • [37] Prediction model for cardiovascular disease risk in hemodialysis patients
    Xu You
    Ying Yue Huang
    Ying Wang
    Ming Xue Yu
    Xiang Yong Li
    Lin Xu
    He Qun Zou
    International Urology and Nephrology, 2022, 54 : 1127 - 1134
  • [38] A Machine Learning Approach for Risk Prediction of Cardiovascular Disease
    Panda, Shovna
    Palei, Shantilata
    Samartha, Mullapudi Venkata Sai
    Jena, Biswajit
    Saxena, Sanjay
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 313 - 323
  • [39] Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction
    Nurmohamed, Nick S.
    Kraaijenhof, Jordan M.
    Mayr, Manuel
    Nicholls, Stephen J.
    Koenig, Wolfgang
    Catapano, Alberico L.
    Stroes, Erik S. G.
    EUROPEAN HEART JOURNAL, 2023, : 1594 - 1607
  • [40] Epigenetic Contributions to Clinical Risk Prediction of Cardiovascular Disease
    Chybowska, Aleksandra D.
    Gadd, Danni A.
    Cheng, Yipeng
    Bernabeu, Elena
    Campbell, Archie
    Walker, Rosie M.
    Mcintosh, Andrew M.
    Wrobel, Nicola
    Murphy, Lee
    Welsh, Paul
    Sattar, Naveed
    Price, Jackie F.
    Mccartney, Daniel L.
    Evans, Kathryn L.
    Marioni, Riccardo E.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2024, 17 (01): : E004265