Low-light image enhancement based on variational image decomposition

被引:0
|
作者
Su, Yonggang [1 ,2 ]
Yang, Xuejie [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
关键词
Low-light image enhancement; Variational image decomposition; TV-G-L-2; model; Histogram equalization; HISTOGRAM EQUALIZATION; FRINGE PATTERN; NOISE REMOVAL; RETINEX; ILLUMINATION; NETWORK;
D O I
10.1007/s00530-024-01581-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the significant differences in brightness regions in real-world images, existing low-light image enhancement methods may lead to insufficient enhancement in low-light regions or over-enhancement in normal-light regions, as well as color distortions and artifacts. To overcome this drawback, we propose a real-world low-light image enhancement method based on a variational image decomposition model. In our proposed method, we first grayscale and histogram equalize the low-light image. Then, we use the variational image decomposition model to decompose the histogram-equalized grayscale image into cartoon, texture, and high-frequency detail components. Next, we use a Gaussian low-pass filter (GLPF) to remove the noise in the cartoon component, and use a nonlinear stretch function and a gamma function to enhance and compress the texture component and the high-frequency detail component, respectively. We then merge the processed components to obtain a reconstructed grayscale image. Finally, we convert the low-light image from the RGB color space to the HSV color space and recombine the reconstructed grayscale image with the H and S components to obtain the enhanced image after color space conversion. To validate the effectiveness of our proposed method, we carried out both qualitative and quantitative experiments on 5 datasets, and compared it with 14 other low-light image enhancement methods. The results show that our proposed method outperforms most of the low-light image enhancement methods in both qualitative and quantitative performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    Neural Computing and Applications, 2022, 34 (10) : 7733 - 7748
  • [42] Low-light image enhancement network with decomposition and adaptive information fusion
    Zhu, Hegui
    Wang, Kai
    Zhang, Ziwei
    Liu, Yuelin
    Jiang, Wuming
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 7733 - 7748
  • [43] Low-light image enhancement network with decomposition and adaptive information fusion
    Hegui Zhu
    Kai Wang
    Ziwei Zhang
    Yuelin Liu
    Wuming Jiang
    Neural Computing and Applications, 2022, 34 : 7733 - 7748
  • [44] Low-light image enhancement based on sharpening-smoothing image filter
    Demir, Y.
    Kaplan, N. H.
    DIGITAL SIGNAL PROCESSING, 2023, 138
  • [45] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [46] Underwater image enhancement based on variational image decomposition
    Zheng, Huamiao
    Wu, Yuewei
    Su, Yonggang
    JOURNAL OF OPTICS-INDIA, 2025,
  • [47] Low-Light Image Enhancement Based on Constrained Norm Estimation
    Zhao, Tan
    Ding, Hui
    Shang, Yuanyuan
    Zhou, Xiuzhuang
    COMPUTER VISION, PT I, 2017, 771 : 368 - 379
  • [48] Wavelet-based enhancement network for low-light image
    Hu, Xiaopeng
    Liu, Kang
    Yin, Xiangchen
    Gao, Xin
    Jiang, Pingsheng
    Qian, Xu
    DISPLAYS, 2025, 87
  • [49] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184
  • [50] A low-light image enhancement method based on HSV space
    Zhou, Libing
    Chen, Xiaojing
    Ye, Baisong
    Jiang, Xueli
    Zou, Sheng
    Ji, Liang
    Yu, Zhengqian
    Wei, Jianjian
    Zhao, Yexin
    Wang, Tianyu
    IMAGING SCIENCE JOURNAL, 2025, 73 (01): : 16 - 29