Low-light image enhancement based on variational image decomposition

被引:0
|
作者
Su, Yonggang [1 ,2 ]
Yang, Xuejie [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
关键词
Low-light image enhancement; Variational image decomposition; TV-G-L-2; model; Histogram equalization; HISTOGRAM EQUALIZATION; FRINGE PATTERN; NOISE REMOVAL; RETINEX; ILLUMINATION; NETWORK;
D O I
10.1007/s00530-024-01581-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the significant differences in brightness regions in real-world images, existing low-light image enhancement methods may lead to insufficient enhancement in low-light regions or over-enhancement in normal-light regions, as well as color distortions and artifacts. To overcome this drawback, we propose a real-world low-light image enhancement method based on a variational image decomposition model. In our proposed method, we first grayscale and histogram equalize the low-light image. Then, we use the variational image decomposition model to decompose the histogram-equalized grayscale image into cartoon, texture, and high-frequency detail components. Next, we use a Gaussian low-pass filter (GLPF) to remove the noise in the cartoon component, and use a nonlinear stretch function and a gamma function to enhance and compress the texture component and the high-frequency detail component, respectively. We then merge the processed components to obtain a reconstructed grayscale image. Finally, we convert the low-light image from the RGB color space to the HSV color space and recombine the reconstructed grayscale image with the H and S components to obtain the enhanced image after color space conversion. To validate the effectiveness of our proposed method, we carried out both qualitative and quantitative experiments on 5 datasets, and compared it with 14 other low-light image enhancement methods. The results show that our proposed method outperforms most of the low-light image enhancement methods in both qualitative and quantitative performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Low-light color image enhancement based on NSST
    Xiaochu W.
    Guijin T.
    Xiaohua L.
    Ziguan C.
    Suhuai L.
    Journal of China Universities of Posts and Telecommunications, 2019, 26 (05): : 41 - 48
  • [32] Gradient-Based Low-Light Image Enhancement
    Tanaka, Masayuki
    Shibata, Takashi
    Okutomi, Masatoshi
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2019,
  • [33] Low-light image enhancement based on virtual exposure
    Wang, Wencheng
    Yan, Dongliang
    Wu, Xiaojin
    He, Weikai
    Chen, Zhenxue
    Yuan, Xiaohui
    Li, Lun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [34] Fusion-Based Low-Light Image Enhancement
    Wang, Haodian
    Wang, Yang
    Cao, Yang
    Zha, Zheng-Jun
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 121 - 133
  • [35] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [36] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [38] Low-light image enhancement via adaptive frequency decomposition network
    Xiwen Liang
    Xiaoyan Chen
    Keying Ren
    Xia Miao
    Zhihui Chen
    Yutao Jin
    Scientific Reports, 13
  • [39] Low-light image enhancement via adaptive frequency decomposition network
    Liang, Xiwen
    Chen, Xiaoyan
    Ren, Keying
    Miao, Xia
    Chen, Zhihui
    Jin, Yutao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Deep parametric Retinex decomposition model for low-light image enhancement
    Li, Xiaofang
    Wang, Weiwei
    Feng, Xiangchu
    Li, Min
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241