Low-light image enhancement based on variational image decomposition

被引:0
|
作者
Su, Yonggang [1 ,2 ]
Yang, Xuejie [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
关键词
Low-light image enhancement; Variational image decomposition; TV-G-L-2; model; Histogram equalization; HISTOGRAM EQUALIZATION; FRINGE PATTERN; NOISE REMOVAL; RETINEX; ILLUMINATION; NETWORK;
D O I
10.1007/s00530-024-01581-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the significant differences in brightness regions in real-world images, existing low-light image enhancement methods may lead to insufficient enhancement in low-light regions or over-enhancement in normal-light regions, as well as color distortions and artifacts. To overcome this drawback, we propose a real-world low-light image enhancement method based on a variational image decomposition model. In our proposed method, we first grayscale and histogram equalize the low-light image. Then, we use the variational image decomposition model to decompose the histogram-equalized grayscale image into cartoon, texture, and high-frequency detail components. Next, we use a Gaussian low-pass filter (GLPF) to remove the noise in the cartoon component, and use a nonlinear stretch function and a gamma function to enhance and compress the texture component and the high-frequency detail component, respectively. We then merge the processed components to obtain a reconstructed grayscale image. Finally, we convert the low-light image from the RGB color space to the HSV color space and recombine the reconstructed grayscale image with the H and S components to obtain the enhanced image after color space conversion. To validate the effectiveness of our proposed method, we carried out both qualitative and quantitative experiments on 5 datasets, and compared it with 14 other low-light image enhancement methods. The results show that our proposed method outperforms most of the low-light image enhancement methods in both qualitative and quantitative performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Retinex based low-light image enhancement using guided filtering and variational framework
    Zhang Shi
    Tang Gui-jin
    Liu Xiao-hua
    Luo Su-huai
    Wang Da-dong
    OPTOELECTRONICS LETTERS, 2018, 14 (02) : 156 - 160
  • [22] Low-light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Moon, Byeongho
    Ko, Seungyong
    Yu, Soohwan
    Paik, Joonki
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2017,
  • [23] Retinex based low-light image enhancement using guided filtering and variational framework
    张诗
    唐贵进
    刘小花
    罗苏淮
    王大东
    Optoelectronics Letters, 2018, 14 (02) : 156 - 160
  • [24] Low-Light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Yu, Soohwan
    Moon, Byeongho
    Ko, Seungyong
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (02) : 178 - 184
  • [25] Two-stage image decomposition and color regulator for low-light image enhancement
    Yu, Xinyi
    Li, Hanxiong
    Yang, Haidong
    VISUAL COMPUTER, 2023, 39 (09): : 4165 - 4175
  • [26] Two-stage image decomposition and color regulator for low-light image enhancement
    Xinyi Yu
    Hanxiong Li
    Haidong Yang
    The Visual Computer, 2023, 39 : 4165 - 4175
  • [27] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, 26 (05) : 41 - 48
  • [28] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [29] Low-light color image enhancement based on NSST
    Wu Xiaochu
    Tang Guijin
    Liu Xiaohua
    Cui Ziguan
    Luo Suhuai
    The Journal of China Universities of Posts and Telecommunications, 2019, (05) : 41 - 48
  • [30] Low-Light Image Enhancement Based on Transmission Normalization
    Yang A.
    Song C.
    Zhang L.
    Bai H.
    Bu L.
    Yang, Aiping (yangaiping@tju.edu.cn), 2017, Tianjin University (50): : 997 - 1003