Percolation renormalization group analysis of confinement in Z2 lattice gauge theories

被引:0
|
作者
Duennweber, Gesa [1 ,2 ,3 ,4 ]
Linsel, Simon M. [1 ,2 ,5 ]
Bohrdt, Annabelle [2 ,6 ]
Grusdt, Fabian [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Tech Univ Munich, TUM Sch Nat Sci, Dept Phys, Dept Phys, James-Franck-Str 1, D-85748 Garching, Germany
[4] Bayer Akad Wissensch, Walther Meissner Inst, Walther Meissner Str. 8, D-85748 Garching, Germany
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] Univ Regensburg, Inst Theoret Phys, Univ Str 31, D-93053 Regensburg, Germany
基金
欧洲研究理事会;
关键词
REAL-SPACE RENORMALIZATION; QUARK CONFINEMENT; BOND PERCOLATION; SITE; PROBABILITIES; STATES; ORDER;
D O I
10.1103/PhysRevB.111.024314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z(2) LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical Z(2) LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at T < infinity in the model we consider. Our RG scheme enables future analytical studies of Z(2) LGTs with matter and quantum fluctuations and beyond.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Percolation as a confinement order parameter in Z2 lattice gauge theories
    Linsel, Simon M.
    Bohrdt, Annabelle
    Homeier, Lukas
    Pollet, Lode
    Grusdt, Fabian
    PHYSICAL REVIEW B, 2024, 110 (24)
  • [2] Dynamical localization in Z2 lattice gauge theories
    Smith, Adam
    Knolle, Johannes
    Moessner, Roderich
    Kovrizhin, Dmitry L.
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [3] Confinement for all couplings in a Z2 lattice gauge theory
    Orland, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [4] Confinement in a Z2 lattice gauge theory on a quantum computer
    Mildenberger, Julius
    Mruczkiewicz, Wojciech
    Halimeh, Jad C.
    Jiang, Zhang
    Hauke, Philipp
    NATURE PHYSICS, 2025, 21 (02) : 312 - 317
  • [5] Scar states in deconfined Z2 lattice gauge theories
    Aramthottil, Adith Sai
    Bhattacharya, Utso
    Gonzalez-Cuadra, Daniel
    Lewenstein, Maciej
    Barbiero, Luca
    Zakrzewski, Jakub
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [6] COMPARISON OF LATTICE GAUGE-THEORIES WITH GAUGE GROUPS Z2 AND SU(2)
    MACK, G
    PETKOVA, VB
    ANNALS OF PHYSICS, 1979, 123 (02) : 442 - 467
  • [7] RENORMALIZATION GROUP EQUATIONS IN LATTICE GAUGE THEORIES
    MATSUI, T
    NUCLEAR PHYSICS B, 1978, 136 (02) : 276 - 299
  • [8] Simple Z2 lattice gauge theories at finite fermion density
    Prosko, Christian
    Lee, Shu-Ping
    Maciejko, Joseph
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [9] Floquet-Rydberg quantum simulator for confinement in Z2 gauge theories
    Domanti, Enrico C.
    Zappala, Dario
    Bermudez, Alejandro
    Amico, Luigi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [10] QUASI-TOPOLOGICAL QUANTUM FIELD THEORIES AND Z2 LATTICE GAUGE THEORIES
    Ferreira, Miguel J. B.
    Pereira, Victor A.
    Teotonio-Sobrinho, Paulo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (23):