UAV-Assisted Heterogeneous Multi-Server Computation Offloading With Enhanced Deep Reinforcement Learning in Vehicular Networks

被引:0
|
作者
Song, Xiaoqin [1 ,2 ]
Zhang, Wenjing [1 ]
Lei, Lei [1 ]
Zhang, Xinting [1 ]
Zhang, Lijuan [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing 210016, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Key Lab Broadband Wireless Commun & Sensor Network, Minist Educ, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
Servers; Task analysis; Delays; TV; Autonomous aerial vehicles; Vehicle dynamics; Costs; Computation offloading; deep reinforcement learning; Internet of Vehicles; multi-access edge computing (MEC); resource allocation; RESOURCE-ALLOCATION; EDGE; ACCESS; FOG;
D O I
10.1109/TNSE.2024.3446667
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the development of intelligent transportation systems (ITS), computation-intensive and latency-sensitive applications are flourishing, posing significant challenges to resource-constrained task vehicles (TVEs). Multi-access edge computing (MEC) is recognized as a paradigm that addresses these issues by deploying hybrid servers at the edge and seamlessly integrating computing capabilities. Additionally, flexible unmanned aerial vehicles (UAVs) serve as relays to overcome the problem of non-line-of-sight (NLoS) propagation in vehicle-to-vehicle (V2V) communications. In this paper, we propose a UAV-assisted heterogeneous multi-server computation offloading (HMSCO) scheme. Specifically, our optimization objective to minimize the cost, measured by a weighted sum of delay and energy consumption, under the constraints of reliability requirements, tolerable delay, and computing resource limits, among others. Since the problem is non-convex, it is further decomposed into two sub-problems. First, a game-based binary offloading decision (BOD) is employed to determine whether to offload based on the parameters of computing tasks and networks. Then, a multi-agent enhanced dueling double deep Q-network (ED3QN) with centralized training and distributed execution is introduced to optimize server offloading decision and resource allocation. Simulation results demonstrate the good convergence and robustness of the proposed algorithm in a highly dynamic vehicular environment.
引用
收藏
页码:5323 / 5335
页数:13
相关论文
共 50 条
  • [41] Resource Allocation for UAV-Assisted IoT Networks with Energy Harvesting and Computation Offloading
    Xu, Hao
    Pan, Cunhua
    Wang, Kezhi
    Chen, Ming
    Nallanathan, Arumugam
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [42] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [43] Edge Computing Task Offloading Optimization for a UAV-Assisted Internet of Vehicles via Deep Reinforcement Learning
    Yan, Ming
    Xiong, Rui
    Wang, Yan
    Li, Chunguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5647 - 5658
  • [44] UAV-Assisted Multi-Access Computation Offloading via Hybrid NOMA and FDMA in Marine Networks
    Dai, Minghui
    Wu, Yuan
    Qian, Liping
    Su, Zhou
    Lin, Bin
    Chen, Nan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 113 - 127
  • [45] A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted Vehicular Computation Offloading
    Zhao, Liang
    Yang, Kaiqi
    Tan, Zhiyuan
    Li, Xianwei
    Sharma, Suraj
    Liu, Zhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3664 - 3674
  • [46] Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks
    Geng, Liwei
    Zhao, Hongbo
    Wang, Jiayue
    Kaushik, Aryan
    Yuan, Shuai
    Feng, Wenquan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12416 - 12433
  • [47] Dynamic Computation Offloading in Multi-Server MEC Systems: An Online Learning Approach
    Guo, Kun
    Quek, Tony Q. S.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [48] Everyone-Centric Heterogeneous Multi-Server Computation Offloading in ITS with Pervasive AI
    Song, Xiaoqin
    Xu, Bowen
    Zhang, Xinting
    Wang, Shumo
    Song, Tiecheng
    Xing, Guoliang
    Liu, Fang
    IEEE NETWORK, 2023, 37 (02): : 62 - 68
  • [49] Learning-Based Collaborative Computation Offloading in UAV-Assisted Multi-Access Edge Computing
    Xu, Zikun
    Liu, Junhui
    Guo, Ying
    Dong, Yunyun
    He, Zhenli
    ELECTRONICS, 2023, 12 (20)
  • [50] Deep Reinforcement Learning for Jointly Resource Allocation and Trajectory Planning in UAV-Assisted Networks
    Jwaifel, Arwa Mahmoud
    Van Do, Tien
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 71 - 83