Solvability for a reaction-diffusion system modeling biological transportation network

被引:0
|
作者
Li, Bin [1 ]
Wang, Zhi [1 ]
机构
[1] Ningbo Univ Technol, Sch Stat & Data Sci, Ningbo 315211, Peoples R China
来源
关键词
Reaction-diffusion; Global existence; Biological transport networks;
D O I
10.1007/s00033-024-02349-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the initial-boundary value problem of a possibly degenerate reaction-diffusion system over Omega subset of R-n with n >= 1 of the following form {partial derivative(t)m(i )- kappa Delta m(i )+ |m(i)|(gamma-2)m(i) = (partial derivative x(i)p)(2), -del & sdot;[m del p] = S, with m = diag(m(1),& ctdot;,m(n)), the diffusivity kappa > 0, the metabolic exponent gamma >= 2 and the given function S. When kappa = 0, this system was introduced by Haskovec, Kreusser and Markowich as a continuous version of the discrete Hu-Cai model for biological transport networks. In this work, our result asserts that whenever the random fluctuations of the conductance in the medium were considered, i.e., kappa > 0, then for general large data the corresponding initial-boundary value problem possesses a global weak solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] COEXISTENCE STATE OF A REACTION-DIFFUSION SYSTEM
    Meng, Yijie
    Wang, Yifu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [42] Pacemakers in a Reaction-Diffusion Mechanics System
    R. H. Keldermann
    M. P. Nash
    A. V. Panfilov
    Journal of Statistical Physics, 2007, 128 : 375 - 392
  • [43] Sierpinski gasket in a reaction-diffusion system
    Hayase, Y
    Ohta, T
    PHYSICAL REVIEW LETTERS, 1998, 81 (08) : 1726 - 1729
  • [44] DISSIPATIVE STRUCTURES IN A REACTION-DIFFUSION SYSTEM
    KIM, SH
    YEO, SC
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1990, 7 (03) : 188 - 197
  • [46] Geographic tongue as a reaction-diffusion system
    McGuire, Margaret K.
    Fuller, Chase A.
    Lindner, John F.
    Manz, Niklas
    CHAOS, 2021, 31 (03)
  • [47] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [48] A STEFAN PROBLEM FOR A REACTION-DIFFUSION SYSTEM
    FRIEDMAN, A
    ROSS, DS
    ZHANG, JH
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (05) : 1089 - 1112
  • [49] Spiral instabilities in a reaction-diffusion system
    Zhou, LQ
    Ouyang, Q
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (01): : 112 - 118
  • [50] Vesicle and reaction-diffusion hybrid modeling with STEPS
    Hepburn, Iain
    Lallouette, Jules
    Chen, Weiliang
    Gallimore, Andrew R.
    Nagasawa-Soeda, Sarah Y.
    De Schutter, Erik
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)