Sierpinski gasket in a reaction-diffusion system

被引:63
|
作者
Hayase, Y [1 ]
Ohta, T
机构
[1] Ochanomizu Univ, Dept Phys, Tokyo 112, Japan
[2] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo 112, Japan
关键词
D O I
10.1103/PhysRevLett.81.1726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We shall show by computer simulations that a Bonhoeffer van der Pol type reaction-diffusion system in one dimension reveals a curious spatiotemporal pattern in the motion of interacting pulses. For suitably chosen nonlinearity and parameters, the trajectory of pulses exhibits a self-similar regular pattern like a Sierpinski gasket in the space-time coordinate. This is caused by self-replication of a pulse and annihilation and/or preservation of propagating pulses upon collision. The formation of the Sierpinski gasket can be understood by mapping the time evolution of pulses to an equivalent cellular automaton. [S0031-9007(98)06956-7].
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 50 条
  • [1] Gas diffusion in a Sierpinski gasket
    Cao, Liyong
    He, Rong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (05): : 711 - 714
  • [2] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148
  • [3] On the dynamics of a reaction-diffusion system
    Adomian, G
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 81 (01) : 93 - 95
  • [4] AN INTEGRAL FOR A REACTION-DIFFUSION SYSTEM
    BRITTON, NF
    APPLIED MATHEMATICS LETTERS, 1991, 4 (01) : 43 - 47
  • [5] On the dynamics of a reaction-diffusion system
    Appl Math Comput (New York), 1 (93):
  • [6] SOLITONS IN A REACTION-DIFFUSION SYSTEM
    TUCKWELL, HC
    SCIENCE, 1979, 205 (4405) : 493 - 495
  • [7] A discrete chaotic dynamical system on the Sierpinski gasket
    Saltan, Mustafa
    Aslan, Nisa
    Demir, Bunyamin
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 361 - 372
  • [8] The diffusion identification in a SIS reaction-diffusion system
    Coronel, Anibal
    Huancas, Fernando
    Hess, Ian
    Tello, Alex
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 562 - 581
  • [9] Determination of the walk dimension of the Sierpinski gasket without using diffusion
    Grigor'yan, Alexander
    Yang, Meng
    JOURNAL OF FRACTAL GEOMETRY, 2018, 5 (04) : 419 - 460
  • [10] TRANSITION DENSITY OF DIFFUSION ON THE SIERPINSKI GASKET AND EXTENSION OF FLORYS FORMULA
    HATTORI, T
    NAKAJIMA, H
    PHYSICAL REVIEW E, 1995, 52 (01): : 1202 - 1205