Sierpinski gasket in a reaction-diffusion system

被引:63
|
作者
Hayase, Y [1 ]
Ohta, T
机构
[1] Ochanomizu Univ, Dept Phys, Tokyo 112, Japan
[2] Ochanomizu Univ, Grad Sch Humanities & Sci, Tokyo 112, Japan
关键词
D O I
10.1103/PhysRevLett.81.1726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We shall show by computer simulations that a Bonhoeffer van der Pol type reaction-diffusion system in one dimension reveals a curious spatiotemporal pattern in the motion of interacting pulses. For suitably chosen nonlinearity and parameters, the trajectory of pulses exhibits a self-similar regular pattern like a Sierpinski gasket in the space-time coordinate. This is caused by self-replication of a pulse and annihilation and/or preservation of propagating pulses upon collision. The formation of the Sierpinski gasket can be understood by mapping the time evolution of pulses to an equivalent cellular automaton. [S0031-9007(98)06956-7].
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 50 条
  • [31] Pulse dynamics in a reaction-diffusion system
    Ohta, T
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 151 (01) : 61 - 72
  • [32] Qualitative analysis of a reaction-diffusion system
    Wang, MX
    Chen, YL
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 199 - 203
  • [33] ASYMPTOTIC BEHMIOUR IN A REACTION-DIFFUSION SYSTEM
    黄淑祥
    谢春红
    Acta Mathematica Scientia, 1998, (01) : 57 - 62
  • [34] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [35] Internal stabilizability for a reaction-diffusion system
    Sen, Zhou
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 133 - 137
  • [36] Pacemakers in a reaction-diffusion mechanics system
    Keldermann, R. H.
    Nash, M. P.
    Panfilov, A. V.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (1-2) : 375 - 392
  • [37] Convergence rates for a reaction-diffusion system
    Kirane, M
    Tatar, NE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02): : 347 - 357
  • [38] Dash waves in a reaction-diffusion system
    Vanag, VK
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2003, 90 (09)
  • [39] Coloring Sierpinski graphs and Sierpinski gasket graphs
    Klavzar, Sandi
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (02): : 513 - 522
  • [40] ON THE INFLUENCE OF INHOMOGENEITIES IN A REACTION-DIFFUSION SYSTEM
    KULKA, A
    BODE, M
    PURWINS, HG
    PHYSICS LETTERS A, 1995, 203 (01) : 33 - 39