Solvability for a reaction-diffusion system modeling biological transportation network

被引:0
|
作者
Li, Bin [1 ]
Wang, Zhi [1 ]
机构
[1] Ningbo Univ Technol, Sch Stat & Data Sci, Ningbo 315211, Peoples R China
来源
关键词
Reaction-diffusion; Global existence; Biological transport networks;
D O I
10.1007/s00033-024-02349-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the initial-boundary value problem of a possibly degenerate reaction-diffusion system over Omega subset of R-n with n >= 1 of the following form {partial derivative(t)m(i )- kappa Delta m(i )+ |m(i)|(gamma-2)m(i) = (partial derivative x(i)p)(2), -del & sdot;[m del p] = S, with m = diag(m(1),& ctdot;,m(n)), the diffusivity kappa > 0, the metabolic exponent gamma >= 2 and the given function S. When kappa = 0, this system was introduced by Haskovec, Kreusser and Markowich as a continuous version of the discrete Hu-Cai model for biological transport networks. In this work, our result asserts that whenever the random fluctuations of the conductance in the medium were considered, i.e., kappa > 0, then for general large data the corresponding initial-boundary value problem possesses a global weak solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] AN INTEGRAL FOR A REACTION-DIFFUSION SYSTEM
    BRITTON, NF
    APPLIED MATHEMATICS LETTERS, 1991, 4 (01) : 43 - 47
  • [22] On the dynamics of a reaction-diffusion system
    Appl Math Comput (New York), 1 (93):
  • [23] SOLITONS IN A REACTION-DIFFUSION SYSTEM
    TUCKWELL, HC
    SCIENCE, 1979, 205 (4405) : 493 - 495
  • [24] Reaction-diffusion modeling in the NEURON simulator
    Robert A McDougal
    Yosef Skolnick
    James C Schaff
    William W Lytton
    Michael L Hines
    BMC Neuroscience, 13 (Suppl 1)
  • [25] Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics
    S. A. Gourley
    J. W.-H. So
    J. H. Wu
    Journal of Mathematical Sciences, 2004, 124 (4) : 5119 - 5153
  • [26] Reaction-diffusion equations and ecological modeling
    Cosner, C.
    TUTORIALS IN MATHEMATICAL BIOSCIENCES IV: EVOLUTION AND ECOLOGY, 2008, 1922 : 77 - 115
  • [27] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [28] Modeling nonlocal behavior in epidemics via a reaction-diffusion system incorporating population movement along a network
    Grave, Malu
    Viguerie, Alex
    Barros, Gabriel F.
    Reali, Alessandro
    Andrade, Roberto F. S.
    Coutinho, Alvaro L. G. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 401
  • [29] The diffusion identification in a SIS reaction-diffusion system
    Coronel, Anibal
    Huancas, Fernando
    Hess, Ian
    Tello, Alex
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 562 - 581
  • [30] Necessary and sufficient conditions for the unique solvability of a nonlinear reaction-diffusion model
    Anderson, JR
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (02) : 483 - 494