Pattern Transfer for van der Waals Integration

被引:0
|
作者
Hu, Zhen [1 ,2 ]
Sun, Ruo-Xuan [1 ,2 ]
Chen, Xu-Dong [1 ,2 ]
Tian, Jianguo [1 ,2 ,3 ]
Liu, Zhibo [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Teda Appl Phys Inst, Tianjin 300071, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; van der Waals integration; transfer; twisted graphene; van der Waals contact; UNCONVENTIONAL SUPERCONDUCTIVITY; CONTACT RESISTANCE; GRAPHENE FILMS; BILAYER; LIMIT;
D O I
10.1021/acsaelm.4c01664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Atomically thin two-dimensional materials are promising candidates for designing functional electronic and optical devices through van der Waals integration. However, the route toward advanced devices typically involves transferring all prefabricated source materials onto target substrates, with significant reliance on post-transfer masking and etching operations to remove undesirable components. The existing transfer technologies are based on spin-coated polymeric carriers lacking controllable geometry, thereby limiting their ability to selectively transfer only the designated components of the source materials. Here, we introduce a pattern transfer technology for picking out the desired components from source materials on demand by rapidly patterning scalable polymeric transfer carriers into the required shapes and sizes. Patterned carriers provide the advantages of twist-angle controllability and one-step preparation of ready-to-transfer electrodes, enabling the formation of supermoire homostructures and van der Waals electrical contacts. These capabilities of the pattern transfer technology offer great potential for the design and versatile integration of multifunctional van der Waals devices and drive forward the industrial application of two-dimensional materials.
引用
收藏
页码:8463 / 8473
页数:11
相关论文
共 50 条
  • [41] The van der Waals' formula
    Fuchs, K
    ANNALEN DER PHYSIK, 1907, 23 (07) : 385 - 391
  • [42] From van der Waals to VTPR: The systematic improvement of the van der Waals equation of state
    Schmid, Bastian
    Gmehling, Juergen
    JOURNAL OF SUPERCRITICAL FLUIDS, 2010, 55 (02): : 438 - 447
  • [43] Emergence of a Non-Van der Waals Magnetic Phase in a Van der Waals Ferromagnet
    Das, Bikash
    Ghosh, Subrata
    Sengupta, Shamashis
    Auban-Senzier, Pascale
    Monteverde, Miguel
    Dalui, Tamal Kumar
    Kundu, Tanima
    Saha, Rafikul Ali
    Maity, Sujan
    Paramanik, Rahul
    Ghosh, Anudeepa
    Palit, Mainak
    Bhattacharjee, Jayanta K.
    Mondal, Rajib
    Datta, Subhadeep
    SMALL, 2023, 19 (39)
  • [44] Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures
    Krause, R.
    Aeschlimann, S.
    Chavez-Cervantes, M.
    Perea-Causin, R.
    Brem, S.
    Malic, E.
    Forti, S.
    Fabbri, F.
    Coletti, C.
    Gierz, I
    PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [45] Transfer assembly for two-dimensional van der Waals heterostructures
    Fan, Sidi
    Vu, Quoc An
    Tran, Minh Dao
    Adhikari, Subash
    Lee, Young Hee
    2D MATERIALS, 2020, 7 (02):
  • [46] Van der Waals interaction-tuned heat transfer in nanostructures
    Sun, Tao
    Wang, Jianxiang
    Kang, Wei
    NANOSCALE, 2013, 5 (01) : 128 - 133
  • [47] Dexter-Type Exciton Transfer in van der Waals Heterostructures
    Zheng, Shu-Wen
    Wang, Hai
    Wang, Lei
    Wang, Hai-Yu
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (26)
  • [48] Energy transfer during van der Waals cluster - surface collisions
    Ecole Polytechnique, Palaiseau, France
    Surface Science, 1996, 352-354 : 50 - 54
  • [49] Strongly adhesive dry transfer technique for van der Waals heterostructure
    Son, Suhan
    Shin, Young Jae
    Zhang, Kaixuan
    Shin, Jeacheol
    Lee, Sungmin
    Idzuchi, Hiroshi
    Coak, Matthew J.
    Kim, Hwangsun
    Kim, Jangwon
    Kim, Jae Hoon
    Kim, Miyoung
    Kim, Dohun
    Kim, Philip
    Park, Je-Geun
    2D MATERIALS, 2020, 7 (04)
  • [50] Enhancement of Carrier Mobility in Multilayer InSe Transistors by van der Waals Integration
    Li, Zhiwei
    Liu, Jidong
    Ou, Haohui
    Hu, Yutao
    Zhu, Jiaqi
    Huang, Jiarui
    Liu, Haolin
    Tu, Yudi
    Qi, Dianyu
    Hao, Qiaoyan
    Zhang, Wenjing
    NANOMATERIALS, 2024, 14 (04)