Pattern Transfer for van der Waals Integration

被引:0
|
作者
Hu, Zhen [1 ,2 ]
Sun, Ruo-Xuan [1 ,2 ]
Chen, Xu-Dong [1 ,2 ]
Tian, Jianguo [1 ,2 ,3 ]
Liu, Zhibo [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Teda Appl Phys Inst, Tianjin 300071, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; van der Waals integration; transfer; twisted graphene; van der Waals contact; UNCONVENTIONAL SUPERCONDUCTIVITY; CONTACT RESISTANCE; GRAPHENE FILMS; BILAYER; LIMIT;
D O I
10.1021/acsaelm.4c01664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Atomically thin two-dimensional materials are promising candidates for designing functional electronic and optical devices through van der Waals integration. However, the route toward advanced devices typically involves transferring all prefabricated source materials onto target substrates, with significant reliance on post-transfer masking and etching operations to remove undesirable components. The existing transfer technologies are based on spin-coated polymeric carriers lacking controllable geometry, thereby limiting their ability to selectively transfer only the designated components of the source materials. Here, we introduce a pattern transfer technology for picking out the desired components from source materials on demand by rapidly patterning scalable polymeric transfer carriers into the required shapes and sizes. Patterned carriers provide the advantages of twist-angle controllability and one-step preparation of ready-to-transfer electrodes, enabling the formation of supermoire homostructures and van der Waals electrical contacts. These capabilities of the pattern transfer technology offer great potential for the design and versatile integration of multifunctional van der Waals devices and drive forward the industrial application of two-dimensional materials.
引用
收藏
页码:8463 / 8473
页数:11
相关论文
共 50 条
  • [31] Van der Waals rectifiers
    Steven L. Bernasek
    Nature Nanotechnology, 2013, 8 : 80 - 81
  • [32] The van der Waals interaction
    Holstein, BR
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (04) : 441 - 449
  • [33] Van der Waals' elastica
    Mockensturm, Eric
    Mahdavi, Arash
    Proceedings of the ASME Applied Mechanics Division, 2005, 256 : 277 - 291
  • [34] VAN DER WAALS CONSTANTS
    AHLBERG, R
    GOSCINSKI, O
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1974, 7 (10) : 1194 - 1203
  • [35] On a theorem of van der Waals
    Saurel, P
    JOURNAL OF PHYSICAL CHEMISTRY, 1901, 5 (02): : 137 - 140
  • [36] Van der Waals forces
    Margenau, H
    REVIEWS OF MODERN PHYSICS, 1939, 11 (01) : 0001 - 0035
  • [37] Van der Waals superlattices
    Ren, Huaying
    Wan, Zhong
    Duan, Xiangfeng
    NATIONAL SCIENCE REVIEW, 2022, 9 (05)
  • [38] Van der Waals Electrides
    Zhou, Jun
    You, Jing-Yang
    Zhao, Yi-Ming
    Feng, Yuan Ping
    Shen, Lei
    ACCOUNTS OF CHEMICAL RESEARCH, 2024, 57 (17) : 2572 - 2581
  • [39] van der Waals metamaterials
    Dorrell, William
    Pirie, Harris
    Gardezi, S. Minhal
    Drucker, Nathan C.
    Hoffman, Jennifer E.
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [40] van der Waals revisited
    Baerwinkel, Klaus
    Schnack, Juergen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (18) : 4581 - 4588