Pattern Transfer for van der Waals Integration

被引:0
|
作者
Hu, Zhen [1 ,2 ]
Sun, Ruo-Xuan [1 ,2 ]
Chen, Xu-Dong [1 ,2 ]
Tian, Jianguo [1 ,2 ,3 ]
Liu, Zhibo [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Teda Appl Phys Inst, Tianjin 300071, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; van der Waals integration; transfer; twisted graphene; van der Waals contact; UNCONVENTIONAL SUPERCONDUCTIVITY; CONTACT RESISTANCE; GRAPHENE FILMS; BILAYER; LIMIT;
D O I
10.1021/acsaelm.4c01664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Atomically thin two-dimensional materials are promising candidates for designing functional electronic and optical devices through van der Waals integration. However, the route toward advanced devices typically involves transferring all prefabricated source materials onto target substrates, with significant reliance on post-transfer masking and etching operations to remove undesirable components. The existing transfer technologies are based on spin-coated polymeric carriers lacking controllable geometry, thereby limiting their ability to selectively transfer only the designated components of the source materials. Here, we introduce a pattern transfer technology for picking out the desired components from source materials on demand by rapidly patterning scalable polymeric transfer carriers into the required shapes and sizes. Patterned carriers provide the advantages of twist-angle controllability and one-step preparation of ready-to-transfer electrodes, enabling the formation of supermoire homostructures and van der Waals electrical contacts. These capabilities of the pattern transfer technology offer great potential for the design and versatile integration of multifunctional van der Waals devices and drive forward the industrial application of two-dimensional materials.
引用
收藏
页码:8463 / 8473
页数:11
相关论文
共 50 条
  • [11] VAN DER WAALS COMPLEXES Tunable charge transfer
    Martiradonna, Luigi
    NATURE MATERIALS, 2016, 15 (01) : 3 - 3
  • [12] Van der Waals Force Assisted Heat Transfer
    Sasihithlu, K.
    Pendry, J. B.
    Craster, R. V.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (02): : 181 - 188
  • [13] Heat Transfer Problem in a Van Der Waals Gas
    Barbera, Elvira
    Brini, Francesca
    Sugiyama, Masaru
    ACTA APPLICANDAE MATHEMATICAE, 2014, 132 (01) : 41 - 50
  • [14] Van der Waals integration of silicene and hexagonal boron nitride
    Wiggers, F. B.
    Fleurence, A.
    Aoyagi, K.
    Yonezawa, T.
    Yamada-Takamura, Y.
    Feng, H.
    Zhuang, J.
    Du, Y.
    Kovalgin, A. Y.
    de Jong, M. P.
    2D MATERIALS, 2019, 6 (03):
  • [15] Simulation of Transport Moire Pattern in Van Der Waals Heterostructures
    Li, Xiangnan
    Lv, Yawei
    Tong, Qingjun
    Liao, Lei
    Li, Kenli
    Jiang, Changzhong
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (03) : 544 - 547
  • [16] Interfacial charge and energy transfer in van der Waals heterojunctions
    Hu, Zehua
    Liu, Xue
    Hernandez-Martinez, Pedro Ludwig
    Zhang, Shishu
    Gu, Peng
    Du, Wei
    Xu, Weigao
    Demir, Hilmi Volkan
    Liu, Haiyun
    Xiong, Qihua
    INFOMAT, 2022, 4 (03)
  • [17] Interfacial Stress Transfer and Fracture in van der Waals Heterostructures
    Li, Zheling
    Liu, Mufeng
    Kumar, Pankaj
    Chang, Zhenghua
    Qi, Guocheng
    He, Pei
    Wei, Yujie
    Young, Robert J.
    Novoselov, Kostya S.
    ADVANCED MATERIALS, 2024, 36 (47)
  • [18] Upconversion photoluminescence by charge transfer in a van der Waals trilayer
    Hao, Shengcai
    He, Dawei
    Miao, Qing
    Han, Xiuxiu
    Liu, Shuangyan
    Wang, Yongsheng
    Zhao, Hui
    APPLIED PHYSICS LETTERS, 2019, 115 (17)
  • [19] Mapping the ultrafast charge transfer in van der Waals heterostructures
    Plankl, Markus
    Zizlsperger, Martin
    Moosharmmer, Fabian
    Schiegl, Felix
    Sandner, Fabian
    Siday, Thomas
    Huber, Markus A.
    Boland, Jessica L.
    Cocker, Tyler L.
    Huber, Rupert
    2020 45TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2020,
  • [20] Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures
    Cheng, Tiantian
    Meng, Yuxin
    Luo, Man
    Xian, Jiachi
    Luo, Wenjin
    Wang, Weijun
    Yue, Fangyu
    Ho, Johnny C.
    Yu, Chenhui
    Chu, Junhao
    SMALL, 2024, 20 (48)