MP-FocalUNet: Multiscale parallel focal self-attention U-Net for medical image segmentation

被引:0
|
作者
Wang, Chuan [1 ]
Jiang, Mingfeng [1 ]
Li, Yang [1 ]
Wei, Bo [1 ]
Li, Yongming [2 ]
Wang, Pin [2 ]
Yang, Guang [3 ,4 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing, Peoples R China
[3] Royal Brompton Hosp, Cardiovasc Res Ctr, London SW3 6NP, England
[4] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
关键词
Focal self-attention mechanism; Medical image segmentation; Multiscale; Deep learning;
D O I
10.1016/j.cmpb.2024.108562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Medical image segmentation has been significantly improved in recent years with the progress of Convolutional Neural Networks (CNNs). Due to the inherent limitations of convolutional operations, CNNs perform poorly in learning the correlation information between global and long-range features. To solve this problem, some existing solutions rely on building deep encoders and down-sampling operations, but such methods are prone to produce redundant network structures and lose local details. Therefore, medical image segmentation tasks require better solutions to improve the modeling of the global context, while maintaining a strong grasp of the low-level details. Methods: We propose a novel multiscale parallel branch architecture (MP-FocalUNet). On the encoder side of MPFocalUNet, dual-scale sub-networks are used to extract information of different scales. A cross-scale "Feature Fusion" (FF) module was proposed to explore the potential of dual branch networks and fully utilize feature representations at different scales. On the decoder side, combined with the traditional CNN in parallel, focal selfattention is used for long-distance modeling, which can effectively capture the global dependencies and underlying spatial details in a shallower way. Results: Our proposed method is evaluated on both abdominal organ segmentation datasets and automatic cardiac diagnosis challenge datasets. Our method consistently outperforms several state-of-the-art segmentation methods with an average Dice score of 82.45% (2.68% higher than HC-Net) and 91.44% (0.35% higher than HC-Net) on the abdominal organ datasets and the automatic cardiac diagnosis challenge datasets, respectively. Conclusions: Our MP-FocalUNet is a novel encoder-decoder based multiscale parallel branch Transformer network, which solves the problem of insufficient long-distance modeling in CNNs and fuses image information at different scales. Extensive experiments on abdominal and cardiac medical image segmentation tasks show that our MP-FocalUNet outperforms other state-of-the-art methods. In the future, our work will focus on designing more lightweight Transformer-based models and better learning pixel-level intrinsic structural features generated by patch division in visual Transformers.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Modified Double U-Net Architecture for Medical Image Segmentation
    Deb, Sagar Deep
    Jha, Rajib Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (02) : 151 - 162
  • [42] A Bypass-Based U-Net for Medical Image Segmentation
    Chen, Kaixuan
    Xu, Gengxin
    Qian, Jiaying
    Ren, Chuan-Xian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 155 - 164
  • [43] DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation
    Xu, Qing
    Ma, Zhicheng
    He, Na
    Duan, Wenting
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 154
  • [44] APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
    Zhou, Tao
    Dong, YaLi
    Lu, HuiLing
    Zheng, XiaoMin
    Qiu, Shi
    Hou, SenBao
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [45] AttResDU-Net: Medical Image Segmentation Using Attention-based Residual Double U-Net
    Khan, Akib Mohammed
    Ashrafee, Alif
    Khan, Fahim Shahriar
    Hasan, Md. Bakhtiar
    Kabir, Md. Hasanul
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [46] MAEF-Net: MLP Attention for Feature Enhancement in U-Net based Medical Image Segmentation Networks
    Zhang, Yunchu
    Dong, Jianfei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (02) : 846 - 857
  • [47] FCSU-Net: A novel full-scale Cross-dimension Self-attention U-Net with collaborative fusion of multi-scale feature for medical image segmentation
    Xu, Shijie
    Chen, Yufeng
    Yang, Shukai
    Zhang, Xiaoqian
    Sun, Feng
    Computers in Biology and Medicine, 2024, 180
  • [48] Double attention U-Net for brain tumor MR image segmentation
    Li, Na
    Ren, Kai
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2021, 14 (03) : 467 - 479
  • [49] Attention U-Net for Glaucoma Identification Using Fundus Image Segmentation
    Shyamalee, Thisara
    Meedeniya, Dulani
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 6 - 10
  • [50] ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
    Deng, Yunjiao
    Hou, Yulei
    Yan, Jiangtao
    Zeng, Daxing
    IEEE Access, 2022, 10 : 35932 - 35941