MP-FocalUNet: Multiscale parallel focal self-attention U-Net for medical image segmentation

被引:0
|
作者
Wang, Chuan [1 ]
Jiang, Mingfeng [1 ]
Li, Yang [1 ]
Wei, Bo [1 ]
Li, Yongming [2 ]
Wang, Pin [2 ]
Yang, Guang [3 ,4 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing, Peoples R China
[3] Royal Brompton Hosp, Cardiovasc Res Ctr, London SW3 6NP, England
[4] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
关键词
Focal self-attention mechanism; Medical image segmentation; Multiscale; Deep learning;
D O I
10.1016/j.cmpb.2024.108562
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Medical image segmentation has been significantly improved in recent years with the progress of Convolutional Neural Networks (CNNs). Due to the inherent limitations of convolutional operations, CNNs perform poorly in learning the correlation information between global and long-range features. To solve this problem, some existing solutions rely on building deep encoders and down-sampling operations, but such methods are prone to produce redundant network structures and lose local details. Therefore, medical image segmentation tasks require better solutions to improve the modeling of the global context, while maintaining a strong grasp of the low-level details. Methods: We propose a novel multiscale parallel branch architecture (MP-FocalUNet). On the encoder side of MPFocalUNet, dual-scale sub-networks are used to extract information of different scales. A cross-scale "Feature Fusion" (FF) module was proposed to explore the potential of dual branch networks and fully utilize feature representations at different scales. On the decoder side, combined with the traditional CNN in parallel, focal selfattention is used for long-distance modeling, which can effectively capture the global dependencies and underlying spatial details in a shallower way. Results: Our proposed method is evaluated on both abdominal organ segmentation datasets and automatic cardiac diagnosis challenge datasets. Our method consistently outperforms several state-of-the-art segmentation methods with an average Dice score of 82.45% (2.68% higher than HC-Net) and 91.44% (0.35% higher than HC-Net) on the abdominal organ datasets and the automatic cardiac diagnosis challenge datasets, respectively. Conclusions: Our MP-FocalUNet is a novel encoder-decoder based multiscale parallel branch Transformer network, which solves the problem of insufficient long-distance modeling in CNNs and fuses image information at different scales. Extensive experiments on abdominal and cardiac medical image segmentation tasks show that our MP-FocalUNet outperforms other state-of-the-art methods. In the future, our work will focus on designing more lightweight Transformer-based models and better learning pixel-level intrinsic structural features generated by patch division in visual Transformers.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Medical Image Segmentation Review: The Success of U-Net
    Azad, Reza
    Aghdam, Ehsan Khodapanah
    Rauland, Amelie
    Jia, Yiwei
    Avval, Atlas Haddadi
    Bozorgpour, Afshin
    Karimijafarbigloo, Sanaz
    Cohen, Joseph Paul
    Adeli, Ehsan
    Merhof, Dorit
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10076 - 10095
  • [22] Diffusion Transformer U-Net for Medical Image Segmentation
    Chowdary, G. Jignesh
    Yin, Zhaozheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 622 - 631
  • [23] Recurrent residual U-Net for medical image segmentation
    Alom, Md Zahangir
    Yakopcic, Chris
    Hasan, Mahmudul
    Taha, Tarek M.
    Asari, Vijayan K.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [24] Local Adaptive U-net for Medical Image Segmentation
    Liu, Ning
    Liu, Liangliang
    Wang, Jianxin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 670 - 674
  • [25] Boundary Aware U-Net for Medical Image Segmentation
    Mohammad D. Alahmadi
    Arabian Journal for Science and Engineering, 2023, 48 : 9929 - 9940
  • [26] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Zhao, Yawu
    Wang, Shudong
    Zhang, Yulin
    Qiao, Sibo
    Zhang, Mufei
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 6971 - 6983
  • [27] CSCA U-Net: A channel and space compound attention CNN for medical image segmentation
    Shu, Xin
    Wang, Jiashu
    Zhang, Aoping
    Shi, Jinlong
    Wu, Xiao-Jun
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150
  • [28] An Attention-oriented U-Net Model and Global Feature for Medical Image Segmentation
    Han, Yandong
    Li, Jiangjiang
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2020, 23 (04): : 731 - 738
  • [29] GA-UNet: A Lightweight Ghost and Attention U-Net for Medical Image Segmentation
    Pang, Bo
    Chen, Lianghong
    Tao, Qingchuan
    Wang, Enhui
    Yu, Yanmei
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (04): : 1874 - 1888
  • [30] WRANet: wavelet integrated residual attention U-Net network for medical image segmentation
    Yawu Zhao
    Shudong Wang
    Yulin Zhang
    Sibo Qiao
    Mufei Zhang
    Complex & Intelligent Systems, 2023, 9 : 6971 - 6983