DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation

被引:135
|
作者
Xu, Qing [1 ]
Ma, Zhicheng [2 ]
He, Na [3 ]
Duan, Wenting [1 ]
机构
[1] Univ Lincoln, Sch Comp Sci, Lincoln LN6, Lincs, England
[2] Zhejiang Gongshang Univ, Coll Comp Sci & Technol, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Wanli Univ, Sino German Inst Design & Commun, Ningbo 315100, Zhejiang, Peoples R China
关键词
Medical image segmentation; Multi-scale fusion attention; Depthwise separable convolution; Computer-aided diagnosis;
D O I
10.1016/j.compbiomed.2023.106626
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning architecture with convolutional neural network achieves outstanding success in the field of computer vision. Where U-Net has made a great breakthrough in biomedical image segmentation and has been widely applied in a wide range of practical scenarios. However, the equal design of every downsampling layer in the encoder part and simply stacked convolutions do not allow U-Net to extract sufficient information of features from different depths. The increasing complexity of medical images brings new challenges to the existing methods. In this paper, we propose a deeper and more compact split-attention u-shape network, which efficiently utilises low-level and high-level semantic information based on two frameworks: primary feature conservation and compact split-attention block. We evaluate the proposed model on CVC-ClinicDB, 2018 Data Science Bowl, ISIC-2018, SegPC-2021 and BraTS-2021 datasets. As a result, our proposed model displays better performance than other state-of-the-art methods in terms of the mean intersection over union and dice coefficient. More significantly, the proposed model demonstrates excellent segmentation performance on challenging images. The code for our work and more technical details can be found at https://github.com/ xq141839/DCSAU-Net.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An Automatic Nuclei Image Segmentation Based on Multi-Scale Split-Attention U-Net
    Xu, Qing
    Duan, Wenting
    MICCAI WORKSHOP ON COMPUTATIONAL PATHOLOGY, VOL 156, 2021, 156 : 236 - 245
  • [2] DRA U-Net: An Attention based U-Net Framework for 2D Medical Image Segmentation
    Zhang, Xian
    Feng, Ziyuan
    Zhong, Tianchi
    Shen, Sicheng
    Zhang, Ruolin
    Zhou, Lijie
    Zhang, Bo
    Wang, Wendong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3936 - 3942
  • [3] Hybrid dilation and attention residual U-Net for medical image segmentation
    Wang, Zekun
    Zou, Yanni
    Liu, Peter X.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [4] Hybrid Swin Deformable Attention U-Net for Medical Image Segmentation
    Wang, Lichao
    Huang, Jiahao
    Xing, Xiaodan
    Yang, Guang
    2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [5] U-Net Transformer: Self and Cross Attention for Medical Image Segmentation
    Petit, Olivier
    Thome, Nicolas
    Rambour, Clement
    Themyr, Loic
    Collins, Toby
    Soler, Luc
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 267 - 276
  • [6] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810
  • [7] CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET
    Zhang, Fanyang
    Fan, Zhang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (02)
  • [8] CFU-Net: A Coarse-Fine U-Net With Multilevel Attention for Medical Image Segmentation
    Yin, Haitao
    Shao, Yudong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [9] SAU-Net: Medical Image Segmentation Method Based on U-Net and Self-Attention
    Zhang S.-J.
    Peng Z.
    Li H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2433 - 2442
  • [10] OAU-net: Outlined Attention U-net for biomedical image segmentation
    Song, Haojie
    Wang, Yuefei
    Zeng, Shijie
    Guo, Xiaoyan
    Li, Zheheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79