Optimization of subcellular boron distribution measurement using UV-C imprint and neutron autoradiography in boron neutron capture therapy

被引:2
|
作者
Wu, Yan [1 ]
Shu, Diyun [2 ]
Geng, Changran [1 ]
Postuma, Ian [3 ]
Tang, Xiaobin [1 ]
Liu, Yuan-Hao [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Nucl Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Neuboron Therapy Syst Ltd, Xiamen 361000, Fujian, Peoples R China
[3] INFN, Natl Inst Nucl Phys, Unit Pavia, I-27100 Pavia, Italy
基金
中国国家自然科学基金;
关键词
Subcellular boron distribution; Boron neutron capture therapy; Neutron autoradiography; PADC; UV-C imprint; CELLS; ALPHA; SENSITIZATION; IRRADIATION;
D O I
10.1016/j.radmeas.2024.107351
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The subcellular distribution of boron drugs is crucial for studying radiobiological effects and microdosimetry in boron neutron capture therapy (BNCT). Accurately measuring this distribution remains a key objective. Building on the neutron autoradiography method combined with UV-C sensitization, this study aims to further optimize the approach and implement it at the BNCT center of Xiamen Humanity Hospital, with the expectation of applying it to future boron drug development. A dedicated irradiation device for neutron autoradiography was developed based on a clinical epithermal neutron beam. Optimal conditions for etching and UV-C cell imprints were investigated. After U251 cells were incubated with L-4-boronophenylalanin (BPA), cell imprints and track images were obtained under optimal conditions, and track distributions within cell structure were evaluated. The optimal etching condition involved using Potassium-Ethanol-Water (PEW) solution for 10 min, yielding track diameters of approximately 1 mu m. After the poly allyl diglycol carbonate (PADC) with cultured cells was exposed to UV-C for 12 h, a clear cellular structure was imprinted on the PADC. The coupled track and cell structure images suggest that BPA may concentrate more around the U251 cell nucleus. The results demonstrate that the improved method can clearly distinguish tracks within the nucleus and cytoplasm in two-dimensional projections, enabling a more accurate evaluation of boron distribution at the subcellular scale.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A COMPACT NEUTRON SOURCE FOR BORON NEUTRON CAPTURE THERAPY
    Golubev, S. V.
    Izotov, I. V.
    Razin, S. V.
    Sidorov, A. V.
    Skalyga, V. A.
    RADIOPHYSICS AND QUANTUM ELECTRONICS, 2017, 59 (8-9) : 682 - 689
  • [22] Design of a neutron target for boron neutron capture therapy
    Wang J.
    Kong H.
    Li D.
    He Jishu/Nuclear Techniques, 2024, 47 (04):
  • [23] Capillary neutron optics for boron neutron capture therapy
    Xiao, QF
    Sharov, VA
    Gibson, DM
    Chen, H
    Mildner, DFR
    Downing, RG
    CANCER NEUTRON CAPTURE THERAPY, 1996, : 399 - 406
  • [24] A Compact Neutron Source for Boron Neutron Capture Therapy
    S. V. Golubev
    I. V. Izotov
    S. V. Razin
    A. V. Sidorov
    V. A. Skalyga
    Radiophysics and Quantum Electronics, 2017, 59 : 682 - 689
  • [25] Utilizing neutron generators in boron neutron capture therapy
    Metwally, Walid A.
    Adel, Yumna
    Dalah, Entesar Z.
    Al-Omari, Husam
    APPLIED RADIATION AND ISOTOPES, 2021, 174
  • [26] Quantitative autoradiography in boron neutron capture therapy considering the particle ranges in the samples
    Takeno, Satoshi
    Tanaka, Hiroki
    Watanabe, Tsubasa
    Mizowaki, Takashi
    Suzuki, Minoru
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 82 : 306 - 320
  • [27] The physics of the boron neutron capture therapy
    Bruno-Machado, A. C.
    Fortes, E. C. F. S.
    Tijero, M. C.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2010, 32 (04):
  • [28] Boron and gadolinium neutron capture therapy
    Salt, C
    Lennox, AJ
    Takagaki, M
    Maguire, JA
    Hosmane, NS
    RUSSIAN CHEMICAL BULLETIN, 2004, 53 (09) : 1871 - 1888
  • [29] Readiness for Boron Neutron Capture Therapy
    Bayanov, B.
    Burdakov, V.
    Ivanov, A.
    Kasatov, D.
    Kolesnikov, J.
    Koshkarev, A.
    Kuznetsov, A.
    Makarov, A.
    Ostreinov, Yu
    Sokolova, E.
    Sorokin, I.
    Sycheva, T.
    Taskaev, S.
    Shchudlo, I.
    Byvaltsev, V.
    Gavrilova, Yu.
    Kanygin, V.
    Kichigin, A.
    Zdanova, M.
    Yarullina, A.
    Gromilov, S.
    Frolov, S.
    Lezhnin, S.
    Muhamadiyarov, R.
    Zaidi, L.
    2015 INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND COMPUTATIONAL TECHNOLOGIES (SIBIRCON), 2015, : 27 - 32
  • [30] Theranostics in Boron Neutron Capture Therapy
    Sauerwein, Wolfgang A. G.
    Sancey, Lucie
    Hey-Hawkins, Evamarie
    Kellert, Martin
    Panza, Luigi
    Imperio, Daniela
    Balcerzyk, Marcin
    Rizzo, Giovanna
    Scalco, Elisa
    Herrmann, Ken
    Mauri, PierLuigi
    De Palma, Antonella
    Wittig, Andrea
    LIFE-BASEL, 2021, 11 (04):