Quantum Circuit for Imputation of Missing Data

被引:1
|
作者
Sanavio, Claudio [1 ]
Tibaldi, Simone [2 ,3 ]
Tignone, Edoardo [4 ]
Ercolessi, Elisa [2 ,3 ]
机构
[1] Fdn Ist Italiano Tecnol, Ctr Life Nanoneurosci Sapienza, I-00161 Rome, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Leitha Srl, Unipol Grp, I-40138 Bologna, Italy
关键词
Imputation; Qubit; Logic gates; Quantum circuit; Probability distribution; Training; Correlation; Imputation missing data; quantum computing; variational quantum circuit;
D O I
10.1109/TQE.2024.3447875
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N-2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Exploring the Effects of Data Distribution in Missing Data Imputation
    Soares, Jastin Pompeu
    Santos, Miriam Seoane
    Abreu, Pedro Henriques
    Araujo, Helder
    Santos, Joao
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 251 - 263
  • [42] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [43] A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction
    Hu, Zhiyong
    Du, Dongping
    PLOS ONE, 2020, 15 (09):
  • [44] A systematic review of generative adversarial imputation network in missing data imputation
    Yuqing Zhang
    Runtong Zhang
    Butian Zhao
    Neural Computing and Applications, 2023, 35 : 19685 - 19705
  • [45] A systematic review of generative adversarial imputation network in missing data imputation
    Zhang, Yuqing
    Zhang, Runtong
    Zhao, Butian
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (27): : 19685 - 19705
  • [46] Multiple imputation for missing data: a brief introduction
    Baccini, Michela
    EPIDEMIOLOGIA & PREVENZIONE, 2008, 32 (03): : 162 - 163
  • [47] Missing value imputation strategies for metabolomics data
    Grace Armitage, Emily
    Godzien, Joanna
    Alonso-Herranz, Vanesa
    Lopez-Gonzalvez, Angeles
    Barbas, Coral
    ELECTROPHORESIS, 2015, 36 (24) : 3050 - 3060
  • [48] Using association rule for missing data imputation
    Wu, Jianhua
    Song, Qinbao
    Shen, Junyi
    Journal of Information and Computational Science, 2007, 4 (04): : 1155 - 1161
  • [49] MICROARRAY MISSING DATA IMPUTATION USING REGRESSION
    Bayrak, Tuncay
    Ogul, Hasan
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 68 - 73
  • [50] A comparison of imputation techniques for handling missing data
    Musil, CM
    Warner, CB
    Yobas, PK
    Jones, SL
    WESTERN JOURNAL OF NURSING RESEARCH, 2002, 24 (07) : 815 - 829