Quantum Circuit for Imputation of Missing Data

被引:1
|
作者
Sanavio, Claudio [1 ]
Tibaldi, Simone [2 ,3 ]
Tignone, Edoardo [4 ]
Ercolessi, Elisa [2 ,3 ]
机构
[1] Fdn Ist Italiano Tecnol, Ctr Life Nanoneurosci Sapienza, I-00161 Rome, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Leitha Srl, Unipol Grp, I-40138 Bologna, Italy
关键词
Imputation; Qubit; Logic gates; Quantum circuit; Probability distribution; Training; Correlation; Imputation missing data; quantum computing; variational quantum circuit;
D O I
10.1109/TQE.2024.3447875
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N-2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Evaluating the Impact of Missing Data Imputation
    Pantanowitz, Adam
    Marwala, Tshildzi
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2009, 5678 : 577 - 586
  • [32] Optimized parameters for missing data imputation
    Zhang, Shichao
    Qin, Yongsong
    Zhu, Xiaofeng
    Zhang, Jilian
    Zhang, Chengqi
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1010 - 1016
  • [33] MISSING DATA, IMPUTATION AND REGRESSION TREES
    Loh, Wei-Yin
    Zhang, Qiong
    Zhang, Wenwen
    Zhou, Peigen
    STATISTICA SINICA, 2020, 30 (04) : 1697 - 1722
  • [34] Imputation of missing data in industrial databases
    Lakshminarayan, K
    Harp, SA
    Samad, T
    APPLIED INTELLIGENCE, 1999, 11 (03) : 259 - 275
  • [35] Cooperative Clustering Missing Data Imputation
    Wan, Daoming
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 1039 - 1045
  • [36] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [37] Missing phenotype data imputation in pedigree data analysis
    Fridley, B
    de Andrade, M
    GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 249 - 249
  • [38] Missing Data Imputation with High-Dimensional Data
    Brini, Alberto
    van den Heuvel, Edwin R.
    AMERICAN STATISTICIAN, 2024, 78 (02): : 240 - 252
  • [39] Missing phenotype data imputation in pedigree data analysis
    Fridley, Brooke L.
    de Andrade, Mariza
    GENETIC EPIDEMIOLOGY, 2008, 32 (01) : 52 - 60
  • [40] Missing data imputation in multivariate data by evolutionary algorithms
    Figueroa Garcia, Juan C.
    Kalenatic, Dusko
    Lopez Bello, Cesar Amilcar
    COMPUTERS IN HUMAN BEHAVIOR, 2011, 27 (05) : 1468 - 1474