Quantum Circuit for Imputation of Missing Data

被引:1
|
作者
Sanavio, Claudio [1 ]
Tibaldi, Simone [2 ,3 ]
Tignone, Edoardo [4 ]
Ercolessi, Elisa [2 ,3 ]
机构
[1] Fdn Ist Italiano Tecnol, Ctr Life Nanoneurosci Sapienza, I-00161 Rome, Italy
[2] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy
[3] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy
[4] Leitha Srl, Unipol Grp, I-40138 Bologna, Italy
关键词
Imputation; Qubit; Logic gates; Quantum circuit; Probability distribution; Training; Correlation; Imputation missing data; quantum computing; variational quantum circuit;
D O I
10.1109/TQE.2024.3447875
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N-2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data
引用
收藏
页数:12
相关论文
共 50 条
  • [21] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [22] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [23] Missing Data Imputation for Supervised Learning
    Poulos, Jason
    Valle, Rafael
    APPLIED ARTIFICIAL INTELLIGENCE, 2018, 32 (02) : 186 - 196
  • [25] Missing Data Imputation Toolbox for MATLAB
    Folch-Fortuny, Abel
    Arteaga, Francisco
    Ferrer, Alberto
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 93 - 100
  • [26] Imputation of missing ages in pedigree data
    Balise, Raymond R.
    Chen, Yu
    Dite, Gillian
    Felberg, Anna
    Sun, Limei
    Ziogas, Argyrios
    Whittemore, Alice S.
    HUMAN HEREDITY, 2007, 63 (3-4) : 168 - 174
  • [27] gcimpute: A Package for Missing Data Imputation
    Zhao, Yuxuan
    Udell, Madeleine
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (04): : 1 - 27
  • [28] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [29] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [30] Imputation of Missing Data in Industrial Databases
    Kamakshi Lakshminarayan
    Steven A. Harp
    Tariq Samad
    Applied Intelligence, 1999, 11 : 259 - 275