Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties

被引:0
|
作者
Hernandez-Sanchez, M. [1 ]
Tapia-Labra, G. [1 ]
Mendez-Bermudez, J. A. [1 ,2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Honduras, Escuela Fis, Fac Ciencias, Tegucigalpa, Honduras
关键词
DENSITY-OF-STATES; INVERSE PARTICIPATION RATIO; EIGENVALUE DISTRIBUTION; CHARACTERISTIC VECTORS; STATISTICAL PROPERTIES; BORDERED MATRICES; LYAPUNOV SPECTRA; LEVEL STATISTICS; LOCALIZATION; ENSEMBLES;
D O I
10.1103/PhysRevE.110.044124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we introduce the non-Hermitian diluted banded random matrix (nHdBRM) ensemble as the set of N x N real nonsymmetric matrices whose entries are independent Gaussian random variables with zero mean and variance one if | i - j| < b and zero otherwise, moreover off-diagonal matrix elements within the bandwidth b are randomly set to zero such that the sparsity alpha is defined as the fraction of the N ( b - 1)/2 independent nonvanishing off-diagonal matrix elements. By means of a detailed numerical study we demonstrate that the eigenfunction and spectral properties of the nHdBRM ensemble scale with the parameter x = gamma [(b alpha)(2)/N](delta) , where gamma, delta similar to 1. Moreover, the normalized localization length beta of the eigenfunctions follows a simple scaling law: beta = x / (1 + x ). For comparison purposes, we also report eigenfunction and spectral properties of the Hermitian diluted banded random matrix ensemble.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Diluted banded random matrices: scaling behavior of eigenfunction and spectral properties
    Mendez-Bermudez, J. A.
    Ferraz de Arruda, Guilherme
    Rodrigues, Francisco A.
    Moreno, Yamir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (49)
  • [2] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364
  • [3] Spectral Radii of Large Non-Hermitian Random Matrices
    Tiefeng Jiang
    Yongcheng Qi
    Journal of Theoretical Probability, 2017, 30 : 326 - 364
  • [4] Spectral theory of sparse non-Hermitian random matrices
    Metz, Fernando Lucas
    Neri, Izaak
    Rogers, Tim
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (43)
  • [5] RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES
    Tao, Terence
    Vu, Van
    ANNALS OF PROBABILITY, 2015, 43 (02): : 782 - 874
  • [6] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [7] LIMITING SPECTRAL DISTRIBUTIONS OF SUMS OF PRODUCTS OF NON-HERMITIAN RANDOM MATRICES
    Koesters, Holger
    Tikhomirov, Alexander
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2018, 38 (02): : 359 - 384
  • [8] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [9] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [10] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242