SPUX framework: a scalable package for bayesian uncertainty quantification and propagation

被引:0
|
作者
Šukys, Jonas
Bacci, Marco
机构
来源
arXiv | 2021年
关键词
722.4 Digital Computers and Systems - 723 Computer Software; Data Handling and Applications - 723.1.1 Computer Programming Languages - 723.4.1 Expert Systems - 731.1 Control Systems - 921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory - 922.1 Probability Theory - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
Python
引用
收藏
相关论文
共 50 条
  • [41] Bayesian uncertainty quantification and propagation for prediction of milling stability lobe (vol 138, 106532, 2020)
    Li, Kai
    He, Songping
    Liu, Hongqi
    Mao, Xinyong
    Li, Bin
    Luo, Bo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [42] Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation
    Yeratapally, Saikumar R.
    Glavicic, Michael G.
    Argyrakis, Christos
    Sangid, Michael D.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 164 : 110 - 123
  • [43] Uncertainty Quantification of Propagation in Evaporation Ducting
    Enstedt, M.
    Wellander, N.
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 794 - 796
  • [44] Uncertainty quantification and propagation in CALPHAD modeling
    Honarmandi, Pejman
    Paulson, Noah H.
    Arroyave, Raymundo
    Stan, Marius
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2019, 27 (03)
  • [45] Uncertainty quantification and propagation with probability boxes
    Duran-Vinuesa, L.
    Cuervo, D.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (08) : 2523 - 2533
  • [46] Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models
    Hadjidoukas, P. E.
    Angelikopoulos, P.
    Papadimitriou, C.
    Koumoutsakos, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 284 : 1 - 21
  • [47] Bayesian Framework for Uncertainty Quantification and Bias Correction of Projected Streamflow in Climate Change Impact Assessment
    George, Jose
    Athira, P.
    WATER RESOURCES MANAGEMENT, 2024, 38 (12) : 4499 - 4516
  • [48] A Bayesian Augmented-Learning framework for spectral uncertainty quantification of incomplete records of stochastic processes
    Chen, Yu
    Patelli, Edoardo
    Edwards, Benjamin
    Beer, Michael
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 200
  • [49] Uncertainty quantification and sensitivity analysis of package vibration reliability
    Zhu D.
    Wei J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (03): : 204 - 211
  • [50] Bayesian uncertainty quantification of local volatility model
    Kai Yin
    Anirban Mondal
    Sankhya B, 2023, 85 : 290 - 324