SPUX framework: a scalable package for bayesian uncertainty quantification and propagation

被引:0
|
作者
Šukys, Jonas
Bacci, Marco
机构
来源
arXiv | 2021年
关键词
722.4 Digital Computers and Systems - 723 Computer Software; Data Handling and Applications - 723.1.1 Computer Programming Languages - 723.4.1 Expert Systems - 731.1 Control Systems - 921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory - 922.1 Probability Theory - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
Python
引用
收藏
相关论文
共 50 条
  • [21] Uncertainty quantification in Bayesian inversion
    Stuart, Andrew M.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 1145 - 1162
  • [22] UNCERTAINTY QUANTIFICATION FOR BAYESIAN CART
    Castillo, Ismael
    Rockova, Veronika
    ANNALS OF STATISTICS, 2021, 49 (06): : 3482 - 3509
  • [23] A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment
    Guo, Xiaoxue
    Ji, Jie
    Khan, Faisal
    Ding, Long
    Tong, Qi
    SAFETY SCIENCE, 2021, 141
  • [24] Scalable information inequalities for uncertainty quantification
    Katsoulakis, Markos A.
    Rey-Bellet, Luc
    Wang, Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 513 - 545
  • [25] A Bayesian framework for uncertainty quantification of perturbed gamma process based on simulated likelihood
    Chen, Long
    Huang, Tianli
    Zhou, Hao
    Chen, Huapeng
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 72
  • [26] Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework
    Ricciardi, Denielle E.
    Chkrebtii, Oksana A.
    Niezgoda, Stephen R.
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2020, 9 (02) : 181 - 198
  • [27] A Bayesian Deep Learning Framework for RUL Prediction Incorporating Uncertainty Quantification and Calibration
    Lin, Yan-Hui
    Li, Gang-Hui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7274 - 7284
  • [28] Uncertainty Quantification Accounting for Model Discrepancy Within a Random Effects Bayesian Framework
    Denielle E. Ricciardi
    Oksana A. Chkrebtii
    Stephen R. Niezgoda
    Integrating Materials and Manufacturing Innovation, 2020, 9 : 181 - 198
  • [29] BAYESIAN DEEP LEARNING FRAMEWORK FOR UNCERTAINTY QUANTIFICATION IN STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
    Jung, Jeahan
    Shin, Hyomin
    Choi, Minseok
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (01): : C57 - C76
  • [30] Relational dynamic Bayesian network modeling for uncertainty quantification and propagation in airline disruption management
    Ogunsina, Kolawole
    Papamichalis, Marios
    DeLaurentis, Daniel
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 112