SPUX framework: a scalable package for bayesian uncertainty quantification and propagation

被引:0
|
作者
Šukys, Jonas
Bacci, Marco
机构
来源
arXiv | 2021年
关键词
722.4 Digital Computers and Systems - 723 Computer Software; Data Handling and Applications - 723.1.1 Computer Programming Languages - 723.4.1 Expert Systems - 731.1 Control Systems - 921.4 Combinatorial Mathematics; Includes Graph Theory; Set Theory - 922.1 Probability Theory - 961 Systems Science;
D O I
暂无
中图分类号
学科分类号
摘要
Python
引用
收藏
相关论文
共 50 条
  • [31] On the Quantification of Model Uncertainty: A Bayesian Perspective
    David Kaplan
    Psychometrika, 2021, 86 : 215 - 238
  • [32] Bayesian Uncertainty Quantification with Synthetic Data
    Phan, Buu
    Khan, Samin
    Salay, Rick
    Czarnecki, Krzysztof
    COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2019, 2019, 11699 : 378 - 390
  • [33] A Bayesian approach for quantification of model uncertainty
    Park, Inseok
    Amarchinta, Hemanth K.
    Grandhi, Ramana V.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2010, 95 (07) : 777 - 785
  • [34] BAYESIAN NETWORK LEARNING FOR UNCERTAINTY QUANTIFICATION
    Hu, Zhen
    Mahadevan, Sankaran
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 2A, 2017,
  • [35] Bayesian optical flow with uncertainty quantification
    Sun, Jie
    Quevedo, Fernando J.
    Bolit, Erik
    INVERSE PROBLEMS, 2018, 34 (10)
  • [36] On the Quantification of Model Uncertainty: A Bayesian Perspective
    Kaplan, David
    PSYCHOMETRIKA, 2021, 86 (01) : 215 - 238
  • [37] Quantification and incorporation of uncertainty in forest growth and yield projections using a bayesian probabilistic framework
    Wilson, Duncan
    Monleon, Vicente
    Weiskittel, Aaron
    Mathematical and Computational Forestry and Natural-Resource Sciences, 2019, 11 (02): : 264 - 285
  • [38] A comprehensive Bayesian framework for the development, validation and uncertainty quantification of thermal-hydraulic models
    Cocci, Riccardo
    Damblin, Guillaume
    Ghione, Alberto
    Sargentini, Lucia
    Lucor, Didier
    ANNALS OF NUCLEAR ENERGY, 2022, 172
  • [39] Prediction using numerical simulations, a Bayesian framework for uncertainty quantification and its statistical challenge
    Glimm, J
    Lee, Y
    Ye, KQ
    Sharp, DH
    ISUMA 2003: FOURTH INTERNATIONAL SYMPOSIUM ON UNCERTAINTY MODELING AND ANALYSIS, 2003, : 380 - 385
  • [40] Scalable Uncertainty Quantification in Complex Dynamic Networks
    Surana, Amit
    Banaszuk, Andrzej
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 7278 - 7285