Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes

被引:0
|
作者
Prerna, Rama [1 ]
Kant, Rama [1 ]
机构
[1] Univ Delhi, Dept Chem, Complex Syst Grp, Delhi 110007, India
关键词
Soft ionic atmosphere; molar conductivity; aqueous concentrated electrolytes; CONDUCTANCE; SOLVATION;
D O I
10.1007/s12039-024-02312-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}), diffusion coefficient (D), and relative viscosity (eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document}). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (r<overline>H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{r}}_{\text {H}}$$\end{document}), ionic screening length for point particle ions (lD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {D}}$$\end{document}) and a hardness exponent (gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}). The radius (ls)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l_{\text {s}})$$\end{document} of expanded ionic sphere for finite size ions: ls=lD(1+(r<overline>H/lD)3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})<^>3)$$\end{document}. ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document} circumvents the limitations of the classical Debye screening length (kappa-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa <^>{-1})$$\end{document} in concentrated electrolytes. This model leads to a power law dependence of Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}, D and eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document} on ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document}. The extent of the hardness of the ionic atmosphere is characterized by an exponent gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, which is characteristic of an electrolyte solution and lies between 0.2-0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Pipe-Sphere Model for Enhancement of Ionic Conductivity in Composite Solid Electrolytes
    Bhattacharyya, A. J.
    Middya, T. R.
    Tarafdar, S.
    IONICS, 1996, 2 (5-6) : 346 - 352
  • [42] Nanoscale Confinement Effects on Ionic Conductivity of Solid Polymer Electrolytes: The Interplay between Diffusion and Dissociation
    Chen, Xiupeng
    Kong, Xian
    NANO LETTERS, 2023, 23 (11) : 5194 - 5200
  • [43] Ion Diffusion Coefficients Model and Molar Conductivities of Ionic Salts in Aprotic Solvents
    Garrido, Leoncio
    Mejia, Alberto
    Garcia, Nuria
    Tiemblo, Pilar
    Guzman, Julio
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (07): : 3097 - 3103
  • [44] Combined analysis of self-diffusion, conductivity, and viscosity data on room temperature ionic liquids
    Stolwijk, N. A.
    Obeidi, Sh.
    ELECTROCHIMICA ACTA, 2009, 54 (05) : 1645 - 1653
  • [45] Semiclassical model for the ionic self-diffusion coefficient in white dwarfs
    Daligault, J
    Murillo, MS
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [46] Dynamic Analysis Model for the Diffusion Coefficient in High-Viscosity Polymer Solution
    Cai, Lile
    Lu, Junjing
    Gao, Zhengming
    Cai, Ziqi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (46) : 15924 - 15934
  • [47] Effect of Conducting Salts in Ionic Liquid based Electrolytes: Viscosity, Conductivity, and Li-Ion Cell Studies
    Hofmann, Andreas
    Schulz, Michael
    Hanemann, Thomas
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (08): : 10170 - 10189
  • [48] Diffusion coefficient and nucleation density studies on electrochemical deposition of aluminum from chloroaluminate ionic liquid electrolytes
    Peng, Yuxiang
    Shinde, Pravin S.
    Reddy, Ramana G.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 895
  • [49] LOW LATITUDE EMPIRICAL EDDY DIFFUSION-COEFFICIENT MODEL OF THE MIDDLE ATMOSPHERE
    BEIG, G
    CHAKRABARTY, DK
    INDIAN JOURNAL OF RADIO & SPACE PHYSICS, 1989, 18 (5-6): : 246 - 250
  • [50] Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes - an improved model for nanocrystalline thin films and a review of experimental data
    Korte, C.
    Keppner, J.
    Peters, A.
    Schichtel, N.
    Aydin, H.
    Janek, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (44) : 24575 - 24591