Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes

被引:0
|
作者
Prerna, Rama [1 ]
Kant, Rama [1 ]
机构
[1] Univ Delhi, Dept Chem, Complex Syst Grp, Delhi 110007, India
关键词
Soft ionic atmosphere; molar conductivity; aqueous concentrated electrolytes; CONDUCTANCE; SOLVATION;
D O I
10.1007/s12039-024-02312-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}), diffusion coefficient (D), and relative viscosity (eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document}). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (r<overline>H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{r}}_{\text {H}}$$\end{document}), ionic screening length for point particle ions (lD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {D}}$$\end{document}) and a hardness exponent (gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}). The radius (ls)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l_{\text {s}})$$\end{document} of expanded ionic sphere for finite size ions: ls=lD(1+(r<overline>H/lD)3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})<^>3)$$\end{document}. ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document} circumvents the limitations of the classical Debye screening length (kappa-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa <^>{-1})$$\end{document} in concentrated electrolytes. This model leads to a power law dependence of Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}, D and eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document} on ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document}. The extent of the hardness of the ionic atmosphere is characterized by an exponent gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, which is characteristic of an electrolyte solution and lies between 0.2-0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: Ionic liquids plus molecular solvents
    Comminges, C
    Barhdadi, R
    Laurent, M
    Troupel, M
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2006, 51 (02): : 680 - 685
  • [32] Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes
    Park, Suehyun
    Mcdaniel, Jesse G.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (16):
  • [33] THE EFFECT OF IONIC-CONDUCTIVITY ON THE APPARENT CHEMICAL DIFFUSION-COEFFICIENT OF A COMPOSITE ELECTRODE
    ROGERS, MD
    VINCENT, CA
    SOLID STATE IONICS, 1988, 28 : 1138 - 1141
  • [34] An Electro-Chemo-Mechanical Theory With Flexoelectricity: Application to Ionic Conductivity of Soft Solid Electrolytes
    Mathew, Anand
    Kulkarni, Yashashree
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2024, 91 (04):
  • [35] Relationships between center atom species (N, P) and ionic conductivity, viscosity, density, self-diffusion coefficient of quaternary cation room-temperature ionic liquids
    Seki, Shiro
    Hayamizu, Kikuko
    Tsuzuki, Seiji
    Fujii, Kenta
    Umebayashi, Yasuhiro
    Mitsugi, Takushi
    Kobayashi, Takeshi
    Ohno, Yasutaka
    Kobayashi, Yo
    Mita, Yuichi
    Miyashiro, Hajime
    Ishiguro, Shin-ichi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (18) : 3509 - 3514
  • [36] Oscillations in a Magnetized Model Atmosphere with Non-Constant Coefficient of Thermal Conductivity
    Alan Gore
    Solar Physics, 1998, 178 : 13 - 28
  • [37] Oscillations in a magnetized model atmosphere with non-constant coefficient of thermal conductivity
    Gore, A
    SOLAR PHYSICS, 1998, 178 (01) : 13 - 28
  • [38] SELF-DIFFUSION OF POLYMERS IN THE CONCENTRATED REGIME .2. SELF-DIFFUSION AND TRACER-DIFFUSION COEFFICIENT AND VISCOSITY OF CONCENTRATED-SOLUTIONS OF LINEAR POLYSTYRENES IN DIBUTYL PHTHALATE
    NEMOTO, N
    KOJIMA, T
    INOUE, T
    KISHINE, M
    HIRAYAMA, T
    KURATA, M
    MACROMOLECULES, 1989, 22 (09) : 3793 - 3798
  • [39] Thermal Diffusion of Weak Electrolytes. I. A Model for the Determination of the Soret Coefficient of Weak Electrolytes
    Domonkos, L.
    Liszi, J.
    Zeitschrift fuer Physikalische Chemie, 205 (01):
  • [40] Thermal diffusion of weak electrolytes. I. A model for the determination of the soret coefficient of weak electrolytes
    Domonkos, L
    Liszi, J
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 1998, 205 : 57 - 67