Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes

被引:0
|
作者
Prerna, Rama [1 ]
Kant, Rama [1 ]
机构
[1] Univ Delhi, Dept Chem, Complex Syst Grp, Delhi 110007, India
关键词
Soft ionic atmosphere; molar conductivity; aqueous concentrated electrolytes; CONDUCTANCE; SOLVATION;
D O I
10.1007/s12039-024-02312-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}), diffusion coefficient (D), and relative viscosity (eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document}). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (r<overline>H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{r}}_{\text {H}}$$\end{document}), ionic screening length for point particle ions (lD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {D}}$$\end{document}) and a hardness exponent (gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}). The radius (ls)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l_{\text {s}})$$\end{document} of expanded ionic sphere for finite size ions: ls=lD(1+(r<overline>H/lD)3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})<^>3)$$\end{document}. ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document} circumvents the limitations of the classical Debye screening length (kappa-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa <^>{-1})$$\end{document} in concentrated electrolytes. This model leads to a power law dependence of Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}, D and eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document} on ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document}. The extent of the hardness of the ionic atmosphere is characterized by an exponent gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, which is characteristic of an electrolyte solution and lies between 0.2-0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence of grain sizes on the ionic conductivity and the chemical diffusion coefficient in copper selenide
    Balapanov, M. Kh.
    Urazaeva, E. K.
    Zinnurov, I. B.
    Musalimov, R. Sh.
    Yakshibaev, R. A.
    IONICS, 2006, 12 (03) : 205 - 209
  • [22] Micro-Structural Design of Soft Solid Composite Electrolytes With Enhanced Ionic Conductivity
    Khodabandehloo, Nastaran
    Mozaffari, Kosar
    Liu, Liping
    Sharma, Pradeep
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2022, 89 (05):
  • [23] Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO2 Electrodes
    Mayrand-Provencher, Laurence
    Rochefort, Dominic
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (04): : 1632 - 1639
  • [24] Self-diffusion of lithium cations and ionic conductivity in polymer electrolytes based on polyesterdiacrylate
    A. A. Marinin
    K. G. Khatmullina
    V. I. Volkov
    O. V. Yarmolenko
    Russian Journal of Electrochemistry, 2011, 47 : 717 - 725
  • [25] Self-diffusion of lithium cations and ionic conductivity in polymer electrolytes based on polyesterdiacrylate
    Marinin, A. A.
    Khatmullina, K. G.
    Volkov, V. I.
    Yarmolenko, O. V.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2011, 47 (06) : 717 - 725
  • [26] Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy
    Munar, Antoni
    Andrio, Andreu
    Iserte, Rosa
    Compan, Vicente
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (16-17) : 3064 - 3069
  • [27] EFFECT OF STRUCTURE ON SELF-DIFFUSION IN CONCENTRATED ELECTROLYTES - RELATIONSHIP BETWEEN WATER AND IONIC SELF-DIFFUSION COEFFICIENTS
    HERTZ, HG
    MILLS, R
    JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1976, 73 (05) : 499 - 508
  • [28] Theory of soft solid electrolytes: Overall properties of composite electrolytes, effect of deformation and microstructural design for enhanced ionic conductivity
    Mozaffari, Kosar
    Liu, Liping
    Sharma, Pradeep
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 158
  • [29] Reply to "Comment on 'Ionic Conductivity, Diffusion Coefficients and Degree of Dissociation in Lithium Electrolytes, Ionic Liquids and Hydrogel Polyelectrolytes"
    Garrido, Leoncio
    Aranaz, Inmaculada
    Gallardo, Alberto
    Garcia, Carolina
    Garcia, Nuria
    Benito, Esperanza
    Guzman, Julio
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (48): : 10968 - 10969
  • [30] Strategies for fast ion transport in electrochemical capacitor electrolytes from diffusion coefficients, ionic conductivity, viscosity, density and interaction energies based on HSAB theory
    Saito, Morihiro
    Kawaharasaki, Satoru
    Ito, Kensuke
    Yamada, Shinya
    Hayamizu, Kikuko
    Seki, Shiro
    RSC ADVANCES, 2017, 7 (24) : 14528 - 14535