Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes

被引:0
|
作者
Prerna, Rama [1 ]
Kant, Rama [1 ]
机构
[1] Univ Delhi, Dept Chem, Complex Syst Grp, Delhi 110007, India
关键词
Soft ionic atmosphere; molar conductivity; aqueous concentrated electrolytes; CONDUCTANCE; SOLVATION;
D O I
10.1007/s12039-024-02312-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}), diffusion coefficient (D), and relative viscosity (eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document}). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (r<overline>H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{r}}_{\text {H}}$$\end{document}), ionic screening length for point particle ions (lD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {D}}$$\end{document}) and a hardness exponent (gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}). The radius (ls)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(l_{\text {s}})$$\end{document} of expanded ionic sphere for finite size ions: ls=lD(1+(r<overline>H/lD)3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})<^>3)$$\end{document}. ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document} circumvents the limitations of the classical Debye screening length (kappa-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa <^>{-1})$$\end{document} in concentrated electrolytes. This model leads to a power law dependence of Lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda$$\end{document}, D and eta r & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{\text {r}}<^>*$$\end{document} on ls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\text {s}}$$\end{document}. The extent of the hardness of the ionic atmosphere is characterized by an exponent gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, which is characteristic of an electrolyte solution and lies between 0.2-0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Monte-Carlo simulation of ionic conductivity and viscosity of highly concentrated electrolytes based on a pseudo-lattice model
    Ozaki, Hiroyuki
    Kuratani, Kentaro
    Sano, Hikaru
    Kiyobayashi, Tetsu
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (03):
  • [2] Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient
    Saito, Y
    Stephan, AM
    Kataoka, H
    SOLID STATE IONICS, 2003, 160 (1-2) : 149 - 153
  • [3] Ionic conductivity and viscosity correlations in liquid electrolytes for incorporation into PVDF gel electrolytes
    Southall, JP
    Hubbard, HVSA
    Johnston, SF
    Rogers, V
    Davies, GR
    McIntyre, JE
    Ward, IM
    SOLID STATE IONICS, 1996, 85 (1-4) : 51 - 60
  • [4] On analytical theories for conductivity and self-diffusion in concentrated electrolytes
    Bernard, Olivier
    Jardat, Marie
    Rotenberg, Benjamin
    Illien, Pierre
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (16):
  • [5] Refractive Laser Beam Measuring Diffusion Coefficient of Concentrated Battery Electrolytes
    Betts, Katherine
    Heenkenda, K. Y.
    Jacome, Bryan
    Kim, Sohyo
    Tovar, Michael
    Feng, Zhange
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [6] Preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes
    Fan, J.
    Angell, C.A.
    Electrochimica Acta, 1995, 40 (13-14):
  • [7] A model for diffusion and ionic conduction in polymer electrolytes
    Stolwijk, NA
    Obeidi, S
    DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 1004 - 1015
  • [8] Ionic conductivity, viscosity, and self-diffusion coefficients of novel imidazole salts for lithium-ion battery electrolytes
    Szczesna-Chrzan, Anna
    Vogler, Monika
    Yan, Peng
    Zukowska, Grazyna Zofia
    Woelke, Christian
    Ostrowska, Agnieszka
    Szymanska, Sara
    Marcinek, Marek
    Winter, Martin
    Cekic-Laskovic, Isidora
    Wieczorek, Wladyslaw
    Stein, Helge S.
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (25) : 13483 - 13492
  • [9] Development of the Ionic Lattice Model Theory for Concentrated Aqueous Electrolytes
    Ally, Moonis R.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2009, 54 (02): : 411 - 416
  • [10] Ionic conductivity and diffusion coefficient studies of PVdF-HFP polymer electrolytes prepared using phase inversion technique
    Stephan, AM
    Saito, Y
    SOLID STATE IONICS, 2002, 148 (3-4) : 475 - 481