Domain disentanglement and contrastive learning with source-guided sampling for unsupervised domain adaptation person re-identification

被引:0
|
作者
Wu, Cheng-Hsuan [1 ]
Liu, An-Sheng [1 ]
Chen, Chiung-Tao [1 ]
Fu, Li-Chen [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] NTU Ctr Artificial Intelligence & Adv Robot AIROBO, Taipei 10617, Taiwan
关键词
Deep learning; Person re-identification; Domain adaptation; Domain disentanglement; Contrastive learning;
D O I
10.1007/s00138-024-01613-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, fully supervised Person re-id methods have already been well developed. Still, they cannot be easily applied to real-life applications because of the domain gap between real-world databases and training datasets. And annotating ground truth label for the entire surveillance system with multiple cameras and videos are labor-intensive and impracticable in the real application. Besides, as the awareness of the right to privacy is rising, it becomes more challenging to collect sufficient training data from the public. Thence, the difficulty of constructing a new dataset for deployment not only arises from the labor cost of labeling but also because the raw data from the public are hard to come by. To be better adapted to real-life system deployment, we proposed an unsupervised domain adaptation based method, which involves Domain Disentanglement Network and Source-Guided Contrastive learning (SGCL). DD-Net first narrows down the domain gap between two datasets, and then SGCL utilizes the labeled source dataset as the clue to guide the training on the target domain. With these two modules, the knowledge transfer can be completed successfully from the training dataset to real-world scenarios. The conducted experiment shows that the proposed method is competitive with the state-of-the-art methods on two public datasets and even outperforms them under the setting of the small-scale target dataset. Therefore, not only the Person Re-ID, but also the object tracking in video or surveillance system can benefit from our new approach when we went to deploy to different environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification
    Guo, Jifeng
    Sun, Wenbo
    Pang, Zhiqi
    Fei, Yuxiao
    Chen, Yu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [42] Unsupervised Person Re-Identification with Iterative Self-Supervised Domain Adaptation
    Tang, Haotian
    Zhao, Yiru
    Lu, Hongtao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1536 - 1543
  • [43] Attention Mutual Teaching Network for Unsupervised Domain Adaptation Person Re-identification
    Zhang, Wenhao
    Liu, Chang
    Bo, Chunjuan
    Wang, Dong
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [44] Bidirectional Image Translation for Robust Person Re-Identification in Unsupervised Domain Adaptation
    He, Xiaohu
    Liu, Jing
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2025, 32 (02): : 526 - 535
  • [45] AdaDC: Adaptive Deep Clustering for Unsupervised Domain Adaptation in Person Re-Identification
    Li, Shihua
    Yuan, Mingkuan
    Chen, Jie
    Hu, Zhilan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3825 - 3838
  • [46] Improving the Style Adaptation for Unsupervised Cross-Domain Person Re-identification
    Zhang, Wenyuan
    Zhu, Li
    Lu, Lu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [47] Sparse-attention augmented domain adaptation for unsupervised person re-identification
    Zhang, Wei
    Ye, Peijun
    Su, Tao
    Chen, Dihu
    PATTERN RECOGNITION LETTERS, 2025, 187 : 8 - 13
  • [48] Unsupervised Domain Adaptation for Person Re-identification via Heterogeneous Graph Alignment
    Zhang, Minying
    Liu, Kai
    Li, Yidong
    Guo, Shihui
    Duan, Hongtao
    Long, Yimin
    Jin, Yi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3360 - 3368
  • [49] Progressive Unsupervised Domain Adaptation for Image-based Person Re-Identification
    Yang, Mingliang
    Zhao, Jing
    Huang, Da
    Wang, Ji
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7730 - 7736
  • [50] Part-aware Progressive Unsupervised Domain Adaptation for Person Re-Identification
    Yang, Fan
    Yan, Ke
    Lu, Shijian
    Jia, Huizhu
    Xie, Don
    Yu, Zongqiao
    Guo, Xiaowei
    Huang, Feiyue
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1681 - 1695