Domain disentanglement and contrastive learning with source-guided sampling for unsupervised domain adaptation person re-identification

被引:0
|
作者
Wu, Cheng-Hsuan [1 ]
Liu, An-Sheng [1 ]
Chen, Chiung-Tao [1 ]
Fu, Li-Chen [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] NTU Ctr Artificial Intelligence & Adv Robot AIROBO, Taipei 10617, Taiwan
关键词
Deep learning; Person re-identification; Domain adaptation; Domain disentanglement; Contrastive learning;
D O I
10.1007/s00138-024-01613-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, fully supervised Person re-id methods have already been well developed. Still, they cannot be easily applied to real-life applications because of the domain gap between real-world databases and training datasets. And annotating ground truth label for the entire surveillance system with multiple cameras and videos are labor-intensive and impracticable in the real application. Besides, as the awareness of the right to privacy is rising, it becomes more challenging to collect sufficient training data from the public. Thence, the difficulty of constructing a new dataset for deployment not only arises from the labor cost of labeling but also because the raw data from the public are hard to come by. To be better adapted to real-life system deployment, we proposed an unsupervised domain adaptation based method, which involves Domain Disentanglement Network and Source-Guided Contrastive learning (SGCL). DD-Net first narrows down the domain gap between two datasets, and then SGCL utilizes the labeled source dataset as the clue to guide the training on the target domain. With these two modules, the knowledge transfer can be completed successfully from the training dataset to real-world scenarios. The conducted experiment shows that the proposed method is competitive with the state-of-the-art methods on two public datasets and even outperforms them under the setting of the small-scale target dataset. Therefore, not only the Person Re-ID, but also the object tracking in video or surveillance system can benefit from our new approach when we went to deploy to different environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Unsupervised domain adaptation for person re-identification with iterative soft clustering
    Ainam, Jean-Paul
    Qin, Ke
    Owusu, Jim Wilson
    Lu, Guoming
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [22] Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification
    Yan Huang
    Qiang Wu
    Jingsong Xu
    Yi Zhong
    Zhaoxiang Zhang
    International Journal of Computer Vision, 2021, 129 : 2244 - 2263
  • [23] Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification
    Huang, Yan
    Wu, Qiang
    Xu, Jingsong
    Zhong, Yi
    Zhang, Zhaoxiang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2244 - 2263
  • [24] Noise Resistible Network for Unsupervised Domain Adaptation on Person Re-Identification
    Zhang, Suian
    Zeng, Ying
    Hu, Haifeng
    Liu, Shuyu
    IEEE ACCESS, 2021, 9 : 60740 - 60752
  • [25] Unsupervised adversarial domain adaptation with similarity diffusion for person re-identification
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhong, Huicai
    NEUROCOMPUTING, 2021, 442 (442) : 337 - 347
  • [26] Complementary Pseudo Labels for Unsupervised Domain Adaptation On Person Re-Identification
    Feng, Hao
    Chen, Minghao
    Hu, Jinming
    Shen, Dong
    Liu, Haifeng
    Cai, Deng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2898 - 2907
  • [27] Heterogeneous graph driven unsupervised domain adaptation of person re-identification
    Lin, Shaochuan
    Lv, Jianming
    Yang, Zhenguo
    Li, Qing
    Zheng, Wei-Shi
    NEUROCOMPUTING, 2022, 471 : 1 - 11
  • [28] Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
    Dubourvieux, Fabian
    Loesch, Angelique
    Audigier, Romaric
    Ainouz, Samia
    Canu, Stephane
    IEEE ACCESS, 2021, 9 (09): : 149780 - 149795
  • [29] Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-Identification
    Gao, Xingyu
    Chen, Zhenyu
    Wei, Jianze
    Wang, Rubo
    Zhao, Zhijun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1059 - 1071
  • [30] Cluster-Guided Asymmetric Contrastive Learning for Unsupervised Person Re-Identification
    Li, Mingkun
    Li, Chun-Guang
    Guo, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3606 - 3617